Cassini RF ATE System Basic Training Seminar

Fixture and Device Interface Design

Cassini Basic Seminar Outline

- Operation and Troubleshooting
- System Administration and Maintenance
- Basic Test Plan Concepts
- Science of RF Measurement
- Device Definitions
- Example Applications Development
- Test Fixture and Device Interface Design
- Test Design & Best Practices Test Optimization
- Application User Guides

Fixture Basic Functions / Features

• What Do Fixtures Do

- Layers of a Fixture
- Bottom Plate Resources
- Top Plate Assembly and Resources
- Fixture Modules Available
- Smart Carrier Programming
- Planning: Fixture Schematic
- Fixture Assembly

Fixture Basic Functions / Features

What does the fixture do?

 Allows for standard resource routing and switching from the test system to the Device Under Test (DUT). It also allows for specialized signal processing required for the DUT.

Required interfaces:

- RF, AC, and DC interfaces between the tester and fixture. Bottom Board Assembly
- RF, AC, and DC interfaces between itself and the DUT interface board. Top Board Assembly / Carrier Board
- Specialized signal processing for the DUT. Carrier Modules
- DUT Interface Board (DIB) and socket.

Test Head Interface Cassini RF, AC, and DC

Fixture Bottom RF Blocks Cassini

Fixture Bottom AC and DC Blocks Cassini

Fixture Bottom Resource Map Cassini

Pedestal Support Interior

Carrier Board Basic Features

Interior Side Features Module locations 40 Pin Header Aux Header Pogo Locations RF Locations

Exterior Side Features Cbit Generation Module Control 3.3V Regulator SN Chip (Cassini)

Interior Side Features

Exterior Side Features

Carrier Board 40 Pin Headers

= Control Bits

= Voltage Return

= Static Digital

= Power Supply

= Device Power

= Voltage Measure x

= Ground

= Guard

= Customer Specific/Undefined

= Differential Voltage Measure x

Module Locations 20RF

Module Voltages

Note:

1. DS1-4 are not available on Passive carrier boards

Fixture Basic Functions / Features

- What Do Fixtures Do
- Layers of a Fixture
- Bottom Plate Resources
- Top Plate Assembly and Resources
- Fixture Modules Available
- Smart Carrier Programming
- Planning: Fixture Schematic
- Fixture Assembly

Why Modules?

Resource Customization, Extension, and Enhancement

- RF, AC, DC Switching
- Signal Attenuation
- Filtering
- Differential I/Q Signals and Offsets
- Frequency Division
- Voltage Buffering
- Etc....

Standard Modules Available From Roos Instruments

http://roos.com/docs/JLUT-64A253?Open

Module Types Based on Levels of Complexity and Control

- Level 1 Require simple static digital control lines.
 - OTC attenuators, switches, etc... requiring 1 8 Cbits
 - RI developed modules requiring 1 4 static control lines
- Level 2 Require more than simple static digital control but do not require fixture instrument buttons.
 - RI developed modules requiring more than 4 static control lines
 - Only one state or variable to control
- Level 3 Require fixture instrument buttons for control.
 - More that one variable to be controlled ie. state and level commands together

Level 1 Cbit Control Carrier 65A

ators, switches, relays, and configured for module

e" is typed into the switch File Editor (7100) or the (Cassini).

Cbit2 high type C21 into switch field.

Level 1 Module Control

Module Control String

1. Control provided through DS1 - DS4.

2. Format: "S# - state-state-state-state". # = module position

> Example: To drive the lines DS1 and DS3 high at module location M2 type S21X1X into the fixture file switch field.

Note:

1. DS1-4 are not available on Passive carrier boards

Level 1 Module Control Exercise

Write the code string required to place Cbit 3 high and Cbit 5 low. In the same string drive DS1,2, and 4 of the module at M3 high.

Where would the code string be typed?

Answer to Level 1 Control Exercise

- 1. C31C50S311X1 or C50C31S311X1 or S311X1C31C50
- 2. In the fixture file switch field.

Note that strings are not delineated and can be mixed.

Module Types Based on Levels of Complexity and Control

- Level 1 Require simple static digital control lines.
 - OTC attenuators, switches, etc... requiring 1 8 Cbits
 - RI developed modules requiring 1 4 static control lines
- Level 2 Require more than simple static digital control but do not require fixture instrument buttons.
 - RI developed modules requiring more than 4 static control lines
 - Only one state or variable to control
- Level 3 Require fixture instrument buttons for control.
 - More that one variable to be controlled ie. state and level commands together

Level 2 Module Control

Carrier Module

Note:

1. DS1-4 are not available on Passive carrier boards

Module Control String

- 1. Control provided through DS1 DS4, DWRT, DRD, and DCLK.
- 2. Carrier configuration step "Add Module" required in 7100. "Edit Modules" is used in the Fixture Definition on the Cassini.
- 3. No fixture control buttons required in test plan.
- 4. Format: "A#SW=XX" or "A#CX=Y".
 A# = module position
 SW=XX or CX=Y is module specific but still loaded into fixture switch field.

Module Types Based on Levels of Complexity and Control

- Level 1 Require simple static digital control lines.
 - OTC attenuators, switches, etc... requiring 1 8 Cbits
 - RI developed modules requiring 1 4 static control lines
- Level 2 Require more than simple static digital control but do not require fixture instrument buttons.
 - RI developed modules requiring more than 4 static control lines
 - Only one state or variable to control
- Level 3 Require fixture instrument buttons for control.
 - More that one variable to be controlled ie. state and level commands together

Level 3 Module Control

Carrier Module

Module Control

- 1. Control provided through DS1 DS4, DWRT, DRD, and DCLK.
- 2. Carrier configuration steps "Add Module" and "Add Instrument" required. This is done in the Fixture File Editor on the 7100 and in the Fixture Definition on the Cassini.
- 3. Fixture control buttons are required in test plan.

EX.

Note:

1. DS1-4 are not available on Passive carrier boards

Fixture Basic Functions / Features

- What Do Fixtures Do
- Layers of a Fixture
- Bottom Plate Resources
- Top Plate Assembly and Resources
- Fixture Modules Available
- Smart Carrier Programming
- Planning: Fixture Schematic
- Fixture Assembly

Fixture Functional Block Diagram

What is Required?

- 1. DUT pin outs: DUT Functional Block Diagram
- 2. DUT pin resource requirements RF, AC, DC, or Digital: DIB Schematic
- 3. External Circuitry required for each DUT pin: Fixture Schematic
- 4. Tester, handler, and socket implementation

Creating the Fixture Schematic

Three Major Steps

- 1. DUT Functional Block Diagram
- 2. DIB Schematic
- 3. Fixture Schematic
DUT Functional Block Diagram

Device Pin Names and Numbers

Pin Name	Pin Number	Function
Vcc PA	2	DC Power
PA Out	4	RF power output
Mod Out	6	Modulator RF Output
Dmod In	8	Demodulator RF Input
l Out	10	I Demodulator Output
Q Out	12	Q Demodulator Output
Dmod LO	14	Demodulator LO
GND	16	
l In	18	Modulator Input I
Mod LO	20	Modulator LO
Q In	22	Modulator Q in
PA In	24	Amp RF Input
Stb	26	Data Strobe
Data	27	Data Input
Clk	28	Data Clock

Creating the Fixture Schematic

Three Major Steps

- 1. DUT Functional Block Diagram
- 2. DIB Schematic
- 3. Fixture Schematic

DIB Schematic Creation

Fixture Top Assembly.

Device Interface Board I/Os.

Fixture Carrier Board

Type (Smart vs Passive)

Single-site, Dual-site, or Multi-site.

Socket Type required for the DUT.

DUT to DIB resource route names

Creating the Fixture Schematic

Three Major Steps

- 1. DUT Functional Block Diagram
- 2. DIB Schematic
- 3. Fixture Schematic

Roos Instruments

The Spreadsheet

Why A Spread Sheet?

Textually describes the fixture assembly for repeat builds.

Major Sections:

- 1. General information
- 2. Assembly notes
- 3. RF path descriptions
- 4. Module locations
- Specific non pogo pin connections Module to Module
 Resource to Module
 Resource to DutRF
- 6. Pogo pin connections

Spreadsheet – General Info

General Information:

DUT BOARD	RF000
FIXTURE TYPE	RI7100 product = RF000
CARRIER TYPE	SuperSmart Y00065A1
DOCKING TYPE	Seiko – Epson Model XYZ

Spreadsheet - Assembly Notes

Notes:

- 1) Bottom Plate: Pin 32 of header 1 needs clipped for compatibility with old test systems.
- 2) Resource Number is for factory internal use.
- 3) Documentation to be included:
 - * Smart Carrier Module Truth Tables.
 - * Smart Carrier Control Bit Programming.
 - * Software Fixture
- 4) Baluns for DIB provided by customer.

Spreadsheet - RF Paths

RF Routing and Control:

CARRIER	SOFTWARE		DUT PIN	
BOARD PIN ID	FIXTURE ID	RESOURCE	NAME	NOTES / CBIT SETTINGS
J1	DutRF1	RF3	PA In	

Spreadsheet - RF000 RF Paths

RF Routing and Control:

CARRIER	SOFTWARE		DUT PIN				
BOARD PIN ID	FIXTURE ID	RESOURCE	NAME	NOTES / CBIT SETTINGS			
		/					
To be filled out in class							

Student Fixture Block Diagram

Spreadsheet - RF/AC Paths RF000

RF Routing and Control:

CARRIER	SOFTWARE		DUT PIN				
BOARD PIN ID	FIXTURE ID	RESOURCE	NAME	NOTES / CBIT SETTINGS			
T1	D (DE1	DE3	DAI				
JI	DutRFI	RF3	PA In				
J3	DutRF3	RF2	Dmod LO In				
J2	DutRF2	RF7	Mod LO In				
J6	DutRF6	RF6	Dmod In	S911XX			
J5	DutRF5	RF6	Mod Out	S901XX			
J4	DutRF4	RF6	PA Out	S910XX			
Pogo 1	DutP1	WF3	I In				
Pogo 2	DutP2	WF2	Q In				
Pogo 3	DutP3	WF6	I Out	SAXX11			
Pogo 4	DutP4	WF7	Q Out	SA11XX			
Pogo 3	DutP3	RF4	I Out	S9XX01SAXX11			
Pogo 4	DutP4	RF4	Q Out	S9XX00SA01XX			
N	Note: Modules are in positions 9 & 10 All level 1 control						

Student Fixture Block Diagram

Spreadsheet – Module Locations RF000

Module and Instrument Locations

Module		Board Fab#	Instrument	Carrier
Туре	RIK#	Inst. Stack#	Name	Position
SP2T	RIK0026B	Y00036C1		M9
SP4T	RIK0056B	Y0004TC1		M10
SP4T	RIK0056B	Y0004TC1		M3
HSD	RIK0017A	Y0002JB1	RI7431B	M1
		Y0004NC1		
		Stack = Y200061B		

Student Fixture Block Diagram

Other Connections

Non-Pogo AC/DC and Specific RF Connections:

Other		Wire	Wire	
From	То	Length	Color	Notes/Dut Pin Name

Student Fixture Block Diagram

Spreadsheet – Non Pogo Connections

Non-Pogo AC/DC and Specific RF Connections:

Other		Wire	Wire	
From	То	Length	Color	Notes/Dut Pin Name
RF3	DutRF1 J1	15"		SSIS-MCX Qflex
RF7	DutRF3 J3	15"		SSIS-MCX Qflex
RF4	30dB pad			SSIS – SMAF Qflex
30dB pad	SP4T at M9 J5	5"		SMAF-MCX Qflex
SP4T at M9 J2	SPDT at M10 J16	5"		MCX-MCX Qflex
SPDT at M10 J5	DutP2	5"		SMAM-SMAM Qflex

Example paths

Student Fixture Block Diagram

Spreadsheet - Pogo Connections

Pogo Resource Allocation and Notes:

Pogo		Wire	Wire	Dut	
Pin	Resource	Length	Color	Pin	Notes/Dut Pin Name
10	DP1	12"	RED		VCC PA
20	HSD at M1 P3	12"	GRY		From HS Harness Clock
21	HSD at M1 P4	12"	GRY		From HS Harness Data
22	HSD at M1 P5	12"	GRY		From HS Harness Strb

Fixture Basic Functions / Features

- What Do Fixtures Do
- Layers of a Fixture
- Bottom Plate Resources
- Top Plate Assembly and Resources
- Fixture Modules Available
- Smart Carrier Programming
- Planning: Fixture Schematic
- Fixture Assembly

Bottom Plate - Actuator and Legs

Install the fixture actuators and the fixture legs to the bottom of the fixture plate.

Installing RF2, 3, 6, and 7 Cables

Insert four #12 to MCX X 18" cables into one of the brackets as shown.

Installing RF2, 3, 6, and 7 Cables

- Place the ends of the semi-rigid cables into the bracket. Put the tallest one in location C5 of the block.
- Work the connectors into their respective holes.
- Bottom out the bracket into the RF block
- Secure the bracket with 2-56 screws. When doing this apply a **SMALL** amount of Loctite to the threads.

Installing Source Hi and Receive Hi Cables

- Place the other ends of the semi-rigid cables into a second bracket. Put the tallest one in location C6 of the block and the shortest into C7.
- Work the connectors into their respective holes.
- Bottom out the bracket into the RF block
- Secure the bracket with 2-56 screws. When doing this apply a SMALL amount of Locktite to the threads. Make sure not to get any lock-tite on the RF connectors.

Install RF Block into Bottom Plate

Place the completed RF block as shown onto the bottom plate.

WF Block Install (Optional)

Using the same techniques and hardware types as above install 5ea MCX-#12 cables into an RF block. Fill positions C1, C2, C4 C5, and C6.

Install WF Block onto Bottom Plate

Put the assembled WF block into the #12 position on the bottom plate. Remember to install the truss screws into the other side of the block. Use only a **SMALL** amount of Locktite.

DC Harness Installation 12 and 20/30 Style Carriers

Installing DB – DP Block 12 and 20/30 Style Carriers

Install the DB – DP portion of the DC block into position 13. Remember to install the truss screws into the other side of the block. Use only a SMALL amount of Locktite.

Installing Cbits – Fixture Power 12 and 20/30 Style Carriers

Install the Cbits – Fixture Power portion of the DC block into position. Remember to install the truss screws into the other side of the block. Use only a **SMALL** amount of Locktite.

Install bottom side plates.

Add Fixture Sides

Add upper side covers to the bottom assembly and install ground strap.

