## Why Modules?

#### **Resource Customization, Extension, and Enhancement**

- RF, AC, DC Switching
- Signal Attenuation
- Filtering
- Differential I/Q Signals and Offsets
- Frequency Division
- Voltage Buffering
- Etc....

Standard Modules Available From Roos Instruments

http://roos.com/docs/JLUT-64A253?Open

**Roos Instruments** 

Modules & Control 1



#### Module Types Based on Levels of Complexity and Control

- Level 1 Require simple static digital control lines.
  - OTC attenuators, switches, etc... requiring 1 8 Cbits
  - RI developed modules requiring 1 4 static control lines
- Level 2 Require more than simple static digital control but do not require fixture instrument buttons.
  - RI developed modules requiring more than 4 static control lines
  - Only one state or variable to control
- Level 3 Require fixture instrument buttons for control.
  - More that one variable to be controlled ie. state and level commands together



### Level 1 Cbit Control Carrier 65A

| Board Interface Pin Designations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                       |                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000000000000000000000000000000000000000 | OARD                                                                                                                                                                                                                                                                                                     |
| Connector side m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | napping 1:1                             | OGE OF B                                                                                                                                                                                                                                                                                                 |
| GND       O       VCC5F         VCC6F       O       VCC5S         VCC7F       O       VCC6S         VCC8F       O       VCC7S         GND       O       VCC8S         DP1       O       GRD         DP3       O       DP2         DP5       O       DP4         DP7       O       DP6         GND       O       DP8         DP9       O       GRD         DP11       O       DP10         DP13       O       DP12         DP13       O       DP14         GND REF       O       DP16         VM1       O       GRD         VM2       VM1N       VM3         VM3       O       VM2N         VM4       O       VM3N         GND       VM4N       VM4N | 000000000000000000000000000000000000000 | Pin Designation Key:<br>CB = Control Bits<br>SP = Customer Specific/Undefined<br>GND = Ground<br>VRTN = Voltage Return<br>DB = Static Digital<br>VCC = Power Supply<br>DP = Device Power<br>GRD = Guard<br>GNDREF = Ground Reference<br>VMx = Voltage Measure x<br>VM1N = Differential Voltage Measure x |

ators, switches, relays, and configured for module

e" is typed into the switch File Editor (7100) or the (Cassini).

Cbit2 high type C21 into switch field.

## Level 1 Module Control



#### Module Control String

1. Control provided through DS1 - DS4.

2. Format: "S# - state-state-state-state". # = module position

> Example: To drive the lines DS1 and DS3 high at module location M2 type S21X1X into the fixture file switch field.

Note:

1. DS1-4 are not available on Passive carrier boards



Write the code string required to place Cbit 3 high and Cbit 5 low. In the same string drive DS1,2, and 4 of the module at M3 high.

Where would the code string be typed?

# Answer to Level 1 Control Exercise

- 1. C31C50S311X1 or C50C31S311X1 or S311X1C31C50
- 2. In the fixture file switch field.

Note that strings are not delineated and can be mixed.



#### Module Types Based on Levels of Complexity and Control

- Level 1 Require simple static digital control lines.
  - OTC attenuators, switches, etc... requiring 1 8 Cbits
  - RI developed modules requiring 1 4 static control lines
- Level 2 Require more than simple static digital control but do not require fixture instrument buttons.
  - RI developed modules requiring more than 4 static control lines
  - Only one state or variable to control
- Level 3 Require fixture instrument buttons for control.
  - More that one variable to be controlled ie. state and level commands together

## Level 2 Module Control

#### Carrier Module





#### Note:

1. DS1-4 are not available on Passive carrier boards

#### **Roos Instruments**

### Module Control String

- 1. Control provided through DS1 DS4, DWRT, DRD, and DCLK.
- 2. Carrier configuration step "Add Module" required in 7100. "Edit Modules" is used in the Fixture Definition on the Cassini.
- 3. No fixture control buttons required in test plan.
- 4. Format: "A#SW=XX" or "A#CX=Y".
  A# = module position
  SW=XX or CX=Y is module specific but still loaded into fixture switch field.



#### Module Types Based on Levels of Complexity and Control

- Level 1 Require simple static digital control lines.
  - OTC attenuators, switches, etc... requiring 1 8 Cbits
  - RI developed modules requiring 1 4 static control lines
- Level 2 Require more than simple static digital control but do not require fixture instrument buttons.
  - RI developed modules requiring more than 4 static control lines
  - Only one state or variable to control
- Level 3 Require fixture instrument buttons for control.
  - More that one variable to be controlled ie. state and level commands together

## Level 3 Module Control

#### Carrier Module



#### Note:

1. DS1-4 are not available on Passive carrier boards

### Module Control

- 1. Control provided through DS1 DS4, DWRT, DRD, and DCLK.
- 2. Carrier configuration steps "Add Module" and "Add Instrument" required. This is done in the Fixture File Editor on the 7100 and in the Fixture Definition on the Cassini.
- 3. Fixture control buttons are required in test plan.

EX.

