
STDF V4 – 2007 Specification 1

Standard Test Data Format (STDF) V4 - 2007
Specification

STDF V4 – 2007 Specification 2

Table of Contents
Preface... 4
Glossary of Terms... 5
Purpose.. 7
Background... 7
Scope... 11
Data Model for Scan Fail Datalog .. 11
Overview of the Standard ... 17
Use Model... 18
STDF Record Structure... 19
STDF Record Header.. 19
STDF Record Structure... 20
Data Type Codes and Representation ... 22
Optional Fields and Missing/Invalid Data .. 24
Continuation of Records ... 25
STDF Record Types ... 26

Version Update Record (VUR)... 28
Master Information Record (MIR).. 30
Wafer Information Record (WIR) .. 33
Wafer Result Record (WRR) .. 34
Part Information Record (PIR).. 35
Part Results Record (PRR).. 36
Test Synopsis Record (TSR)... 38
Site Description Record (SDR)... 40
Pattern Sequence Record (PSR).. 42
Scan Test Record (STR) ... 44
Name Map Record (NMR) ... 55
Scan Cell Name Record (CNR) .. 56
Scan Structure Record (SSR).. 57
Scan Chain Description Record (SCR)... 58

Appendix... 60
A. ATDF Representation .. 60
B. Data Model to STDF Record Mapping Table.. 61
C Application Primer and Examples... 64

STDF V4 – 2007 Specification 3

List of Figures
Figure 1: Volume Diagnostics Flow... 8
Figure 2: Diagnosis in Multi-Vendor Multi-Tool Environment ... 9
Figure 3: Format Mess, with ATE Custom Formats... 10
Figure 4: Format Mess with EDA Custom Formats ... 10
Figure 5: Standard Format Based Flow .. 11
Figure 6: Conceptual Data Flow... 12
Figure 7: Data Model for Scan Fail Datalog... 13
Figure 8: Simple Test Flow... 14
Figure 9: Sample STDF V4-2007 File Structure .. 78

List of Tables

Table 1: STDF Major Record Types .. 17
Table 2: Structural Overview of the New Standard.. 18
Table 3: Optional Field Flags in PSR ... 43
Table 4: STR Record Structure... 44
Table 5: Z Handling Flags .. 48
Table 6: FAL MAP Flag Description ... 48
Table 7: Mask Map Flag Description ... 48
Table 8: Data Flag field Description... 50
Table 9: User Defined Optional Field Type Selection.. 51

STDF V4 – 2007 Specification 4

Preface
Advances in technology are making it imperative to collect and diagnose detailed
structural IC fail data during manufacturing test to improve yield. However, current
datalog formats (STIL and STDF V4) do not have efficient support for storing structural
fail information. In particular STDF V4 which is widely used for functional and
parametric datalogging does not have any intrinsic support for storing scan and memory
fail requirements. Lack of any standard format to store these fails leads to many custom
formats and corresponding translators which results in un-necessary investments in
development and maintenance as well as inefficiencies in the diagnosis process for yield
learning.

In order to address the above mentioned problems, an extension of STDF V4 called
STDF-V4 2007 has been defined to provide formats for storing scan and memory fails as
well as for supporting the volume diagnosis flows. This document contains the
specifications of this standard.

It is our hope that this standard will be useful to all the companies involved in diagnosing
the structural fail information for yield learning and would adopt this into their tools and
environments.

STDF V4 – 2007 Specification 5

Glossary of Terms

ATPG Automatic Test Pattern Generator: A SW tool normally provided

by EDA companies that is used to create the scan based test
patterns eventually translated by and used on the ATE. Generally
the ATPG tool will output this information as either a WGL, STIL
file, or other proprietary language file.

STIL file Standard Test Interface Language (IEEE1450): A file employing a

standardized format for conveying test pattern, timing, and signal
information (functional and/or structural)

WGL file Waveform Generation Language: A file employing a regular

format for conveying test pattern, timing, and signal information
(functional and/or structural)

Chain ScanChain: A sequence of linked internal scan cells that in the

context of test patterns have a discrete scan input and a discrete
scan output with some number of scancells between the two.

Pattern Sometimes confusing term because it is sometimes used in

multiple contexts. In the structural test context, a pattern is the
scanning in of a data sequence on the scan-in pins that sets all of
the scan cells within the IC with a set of stimulus data, the
execution of a “capture” cycle which transfer the results of the
scan pattern test into the scancells, then shifting out and testing the
test results on the scan-out pin. Typically the stimulus data for the
next scan pattern is shifted on the same cycles that the data from
the present pattern is being shifted out. A Pattern Block will
contain several hundreds or thousands scan patterns. While a single
STIL / WGL file can support multiple pattern block definitions,
generally ATPG tools only include a single pattern block in each
file. And in turn, a single test on the ATE may apply several
pattern blocks, built from multiple ATPG files.

Pattern/Chain/Bit Term that specifies that the scan failure data is being logged in

context of the failing scan pattern #, chain # (via PMR index), and
scancell position within the scan chain. This format is an
alternative to logging the cycle # and PMR index which leaves it to
the downstream diagnostic tool to convert this to the corresponding
pattern/chain/bit information.

PMR Index An arbitrarily numeric index that is assigned to each pin/signal

used by the ATE to provide/monitor test data. PMR indexes must
be > 0. STDF file records failures based on their PMR index. The

STDF V4 – 2007 Specification 6

STDF PMR (Pin Map Record) record is used to provide textual
information about a unique pin (one record per pin).

Signal Synonymous with Pin. IC input/output pin name.

Scan Cell Refers to the flipflop/latch that is used as the stimulus/observation

node of a scan pattern.

Scan-In The name of the signal(pin) on which scan data is applied to by the

ATE

Scan-Out The name of the signal(pin) on which scan data output is tested by

the ATE

ScanStructure A block of information that defines the structure of scan chains

within the logic of an IC. This information will contain the list and
attributes of each scan chain within the IC. Chain attributes
generally include the ATPG signal names used for the Scan-In and
Scan-Out functions, the # of scan cells within the chain, the
clock(s) used to shift the data through the scan chain, and
optionally the design instantiation name of each scan cell within
the chain. When the latter is included, the size of a ScanStructure
block can be significantly large.

Structural Test A general term used for use of specialized on-chip test circuitry for

testing the functionality of individual blocks of sub-circuits within
an IC. Variations of structural test include Scan, Compressed Scan,
BIST (logic Built-In-Test), MBIST (Memory Built-In-Test), and
Boundary Scan.

STDF V4 – 2007 Specification 7

Purpose
The purpose of this standard is to provide a common format for scan fail datalog
specification along with necessary synchronization information enabling an efficient
dataflow for volume diagnostics applications.

Background
Manufacturing yield is a very important factor in the production of a semiconductor
product. It is important in all phases of the production: first silicon, volume ramp and
normal production. Historically the yield fallout was mainly caused by random defects
and process problems, so traditional yield improvement strategies included clean room
improvements and process improvements. Correspondingly the data collection from ATE
for yield monitoring was focused on parametric and gross pass/fail information
collection. However, advances in technology have created a situation where yield loss is
now dominated by the systematic design and process interactions, which are hard to
understand before the silicon implementation. To understand these interactions requires
fail data collection in volume manufacturing. Moreover, the design and pattern dependent
nature of these issues requires fail data to be collected on the internal nodes using
structural test techniques. Therefore the industry is moving toward Volume Diagnostics
flow, where fail data on internal nodes is collected during volume manufacturing and
processed by the diagnostic tools from the EDA vendors to identify the failing structures.
The information on the failing structures is statistically analyzed to identify the yield
improvement opportunities.

Figure 1 shows a flow for volume diagnostic mentioned above. In this flow the test
patterns generated by ATPG tools from EDA vendors are applied to the production
device by the ATE of choice. The ATE then collects the fail information in failure files.

STDF V4 – 2007 Specification 8

Figure 1: Volume Diagnostics Flow

The failure information in these failure files is then used by the diagnosis tools to identify
the failing structure, e.g., failing gate, failing via, failing net, etc. Currently the format in
which these failure files are written depends on the ATE at hand. Each ATE vendor
writes this information in a custom format.

STDF V4 – 2007 Specification 9

Figure 2: Diagnosis in Multi-Vendor Multi-Tool Environment

To complicate the matters further, each diagnosis tool also has its custom input format.
A multi-ATE and multi-diagnosis tools environment for a customer looks like the one
shown in Figure 2. A customer in this situation has to create an IT infrastructure to store
information in multiple formats-- one for each ATE and then translate this information
into the input format of the corresponding diagnosis tool. The responsibility for
developing and supporting the translation tools can be with the EDA vendors, ATE
vendors, or the end users. The situation in the EDA and the ATE cases for a multi-tool,
multi-vendor environment is shown in Figure 3 and Figure 4 respectively. In either case it
is an extra

STDF V4 – 2007 Specification 10

co

Figure 3: Format Mess, with ATE Custom Formats

Figure 4: Format Mess with EDA Custom Formats

overhead for the party responsible for developing and maintaining the conversion tools as
well for the end user who has to deal with the conversion tools mesh/mess.

STDF V4 – 2007 Specification 11

Desired Solution
The overhead associated with development and support of the conversion tools as well as
with IT infrastructures can be eliminated if all the ATE could create failure files in a
standard format and all the diagnosis tools can read the same standard format. This
document describes the extension of STDF V4 that has been developed to serve this need
as shown in Figure 5.

Figure 5: Standard Format Based Flow

Scope

• Scan fail datalog for volume diagnosis
• Fail logging at wafer as well as package test
• Format should allow capture of millions of failures (what one would expect in

2010)
• Format should support the design-test-design flow

Data Model for Scan Fail Datalog
Figure 6 shows a conceptual dataflow diagram for volume diagnostic applications as a
base line for this standard. It shows how the test data flows through the design-to-test-to-
design as well as transformations that the test data may undergo. As the data flows
through the loop, the standard provides mechanisms to keep track of the changes to the
extent that the design/diagnosis tools can correctly relate the fail datalog to the original
files from which the test patterns were generated to perform correct diagnosis. Any
changes to the test data in this loop can be communicated to the analysis tools using this
standard. In addition the standard also supports representation of the information on the

STDF V4 – 2007 Specification 12

conditions and equipment used to perform the test when the fail data was collected, to
enable volume fail analysis over wafers/lots.

In particular, the standard allows following classes of information must be collected and
supported by the format:

• Design Information
• Device Identification
• Test Identification (Test Flow, Test Suite, patterns)
• Test Environment (Temp, freq, volt, etc.)
• Transformation information for synchronization

o Assignment of patterns to test suites
o Addition/deletion/truncation of patterns on tester
o Any Name mappings
o Buffer full/ datalog truncation

• Format Specification for Fail data
• Fail and expect data and how the data is handled on ATE (For example how Z

state is handled)

Figure 6: Conceptual Data Flow

Figure 7 shows an overview of the data model, containing data objects. Each of these
objects will be described in the remaining part of this section with their intent and
contents.

STDF V4 – 2007 Specification 13

Scan Datalog Data Model

STDF Scan
Datalog

Device
Identification

Test
Identification

Test Condition
Specification

Format
Specification

Fail Data

Validation &
Synchronization

1..N

FEH
Identification

Header Information

Design
Information

Figure 7: Data Model for Scan Fail Datalog

Design Informtion
The Design Information object allows the information related to design and DFT to be
stored in the datalog. The design/DFT information that is relevant for volume diagnosis
consists of:

• Design netlist identification
• Scan strcuture information.

Device Identification
The Device Identification Object information allows unique identification of the device
for which the fail data is collected. Both wafer die and packaged part identification are
supported. Device identification is required for statistical analysis of the diagnosis result
for identifying any trends or correlation with other measurements. Wafer die
identification data consists of:

• Wafer ID
• Lot ID
• XCoord, YCoord
• PartNumber
• Electronic ID

Package Identification data consists of:
• Serial Number
• Lot ID
• Die ID
• Electronic ID

STDF V4 – 2007 Specification 14

FEH Identification
This class of data provides the unique identification of Front-End-Hardware (e.g., DUT
boards, probes, etc.) that have been used to connect the product to the tester:

• Site ID: Which site the data was collected, e.g., Singapore, test facility
• Cell ID: The Test Cell where the testing was performed
• Prober/Handler ID: Identification of the prober/handler being used during the test
• LoadBoard ID: Identification of the loadboard being used during the test
• Optional field: Other environment-specific information can be added in the

optional section.

Test Identification
Test Identification data allows unique identification of the test under which the fail
datalog was collected. It contains the following information:

• Test Program Identification
• Test Stage Identification – e.g., Wafer Sort1, Wafer Sort2, Package, test number,

etc.
• Test Suite Identification: This field identifies the test suite within a test flow as

shown in Figure 8.
• Test Pattern Map : This data provides the information on how the patterns for a

test suite are assembled. It contains one entry for each pattern that makes up
patterns for a test suite. For example for P1 and P2 patterns in Test Suite #1 in
Figure 8. Each such entry contains the following information:

o Unique source file identification
o Pattern within the source file.
o Location of the pattern in the list of patterns for the test suite in terms of

offset from the last pattern, Start index and optionally the End index.

Figure 8: Simple Test Flow

STDF V4 – 2007 Specification 15

Test Condition Specification
Test Condition Specification data provides information on the conditions under which the
test was performed when the datalog was collected. In particular, conditions that are
supported include temperature, timing and voltage. The temperature is a global setting,
but the timing and voltage are port-based settings (i.e., one setting per port of the device).
The voltage and timing specification is also specific to a test in the test flow.

Validation and Synchronization
Validation and Synchronization data allows the downstream tools to check the fail
datalog against any special conditions that are encountered during the execution of the
tests during the fail datalog generation. This allows the downstream tools to perform data
integrity checks and allows the volume diagnosis flow to remain in sync with respect to
the test data, test conditions, fail data collection state and any data
transformation/transport. In particular this class of information contains:

• TotalFails: Total number of failures that are logged within the current setup
• BufferLimit[1..N]: This field indicates the fail collection limit per pin.
• FailsAfterBufferFull[1..N]: This is a flag that indicates that failures were observed

after the fail buffer became full. One flag per pin is stored. This information
allows the diagnosis tools to mark the patterns that were applied after the last
pattern/cycle was logged as good/bad, depending on the value of these flags.

• Changelog: If the patterns are modified on the tester after the initial load, then this
field will allow communication of those changes to the diagnosis tools. The
diagnosis tools can update their image of the patterns to make correct assumptions
about the state of those patterns. An example of this is masking of an output,
which must be communicated to the downstream tools to not incorrectly assume it
to be a passing state

• RunTimeSync: It provides information on status of execution of a test e.g.
whether all the information was captured or not w.r.t. a test.

Format Specification
Format specification data indicates the conventions used in the datalog for the fail data.
In particular it contains following information:

• Information on the type of datalog. Both cycle based and pattern based datalogs
are supported. In addition, the datalog is also used to communicate the pattern
change log as well as measured datalog. A flag in the format specification
indicates the log type that follows in the datalog.

• Information on how the Z state is handled in the datalog. The Z-handling
information allows one to handle a tester’s capabilities in terms of making a dual
limit comparison.

Fail Data Specification
Fail data specification contains the actual fail log information. Depending on the format
being specified in the Format specification, a series of records for the fail log in the

STDF V4 – 2007 Specification 16

selected format will follow. Depending on the number of failures that are captured, this
information will contribute most to the data volume.

STDF V4 – 2007 Specification 17

Overview of the Standard
As mentioned above, the new standard leverages the existing STDF V4 specifications.
The new standard uses the existing records for the device and test equipment
identification and adds new record types for the scan test related information. In
particular the scan related records are added as the sub-record type under the existing
major record types in STDF. Table 1 shows the existing major record types in STDF V4.

Table 1: STDF Major Record Types
Major Type Description

0* Information about the STDF file

1* Data collected on a per lot basis

2 Data collected per wafer

5 Data collected on a per part basis

10 Data collected per test in the test program

15* Data collected per test execution

20 Data collected per program segment

50 Generic Data

New record sub-types are added under the starred Major types in Table 1. Table 2 shows
a structural overview of the standard

STDF V4 – 2007 Specification 18

Table 2: Structural Overview of the New Standard

Use Model
The new standard is meant to coexist with the STDF V4 based data flow. In particular
following three use models are supported.

 STDF V4 with no scan fail (existing usage)
 STDF V4 with existing plus the scan fail information
 STDF V4 with Scan fail information only

Version Update Record

Pattern Sequence Record

Name Map Records

Scan Structure Records

Scan Test Record

Device Identification Records

Test Identification Records

FEH Identification Records

Version Identification

Per Lot Information

Device and Test
Setup Information

Per Test Execution
Information

Purpose Records

Scan Test Record

STDF V4 – 2007 Specification 19

 STDF Record Structure
This section describes the basic STDF record structure. It describes the following general
topics, which are applicable to all the record types:

• STDF record header
• Record types and subtypes
• Data type codes and representation
• Optional fields and missing/invalid data

STDF Record Header
Each STDF record begins with a record header consisting of the following three fields:

Field Field Description

REC_LEN The number of bytes of data following the record header
REC_TYP An integer identifying a group of related STDF record types
REC_SUB An integer identifying a specific STDF record type within each

REC_TYP group.

Record Types and Subtypes
The header of each STDF record contains a pair of fields called REC_TYP and
REC_SUB. Each REC_TYP value identifies a group of related STDF record types. Each
REC_SUB value identifies a single STDF record type within a REC_TYP group. The
combination of REC_TYP and REC_SUB values uniquely identifies each record type.
This design allows groups of related records to be easily identified by data analysis
programs, while providing unique identification for each type of record in the file.

STDF V4 – 2007 Specification 20

STDF Record Structure
The following table lists the meaning of the REC_TYP codes in STDF V4-2007.
__
REC_TYP Code Meaning and STDF REC_SUB Codes
__
0 Information about the STDF file

10 File Attributes Record (FAR)
20 Audit Trail Record (ATR)
30 Version Update Record (VUR)

__
1 Data collected on a per lot basis

10 Master Information Record (MIR)
20 Master Results Record (MRR)
30 Part Count Record (PCR)
40 Hardware Bin Record (HBR)
50 Software Bin Record (SBR)
60 Pin Map Record (PMR)
62 Pin Group Record (PGR)
63 Pin List Record (PLR)
70 Retest Data Record (RDR)
80 Site Description Record (SDR)
90 Pattern Sequence Record (PSR)
91 Name Map Record (NMR)
92 Cell Name Record (CNR)
93 Scan Structure Record (SSR)
94 Scan Chain Record (SCR)

__
2 Data collected per wafer

10 Wafer Information Record (WIR)
20 Wafer Results Record (WRR)
30 Wafer Configuration Record (WCR)

__
5 Data collected on a per part basis

10 Part Information Record (PIR)
20 Part Results Record (PRR)

__
10 Data collected per test in the test program

30 Test Synopsis Record (TSR)
__
15 Data collected per test execution

10 Parametric Test Record (PTR)
15 Multiple-Result Parametric Record (MPR)
20 Functional Test Record (FTR)
30 Scan Test Record (STR)

__

STDF V4 – 2007 Specification 21

20 Data collected per program segment
10 Begin Program Section Record (BPS)
20 End Program Section Record (EPS)

__
50 Generic Data

10 Generic Data Record (GDR)
30 Datalog Text Record (DTR)

__
180 Reserved for use by Image software
__
181 Reserved for use by IG900 software

STDF V4 – 2007 Specification 22

Data Type Codes and Representation
The STDF specification uses a set of data type codes that are concise and easily
recognizable. For example, R*4 indicates a REAL (float) value stored in four bytes. A
byte consists of eight bits of data. For purposes of this document, the low order bit of
each byte is designated as bit 0 and the high order bit as bit 7. The following table gives
the complete list of STDF data type codes, as well as the equivalent C language type
specifier.
__
Code Description C Type Specifier
__
C*12 Fixed length character string: char[12]
 If a fixed length character string does not fill the
 entire field, it must be left-justified and padded
 with spaces.
__
C*n Variable length character string: char[]
 first byte = unsigned count of bytes to follow
 (maximum of 255 bytes)
__
S*n Variable length character string: char[]
 first two bytes = unsigned count of bytes to follow
 (maximum of 65535 bytes)
__
C*f Variable length character string: char[]
 string length is stored in another field
__
U*f Variable type U type fields where
 the type f is stored in another field can have value
 1,2 or 4
__
U*1 One byte unsigned integer unsigned char
__
U*2 Two byte unsigned integer unsigned short
__
U*4 Four byte unsigned integer unsigned long
__
U*8 Eight byte unsigned integer Unsigned long long
__
I*1 One byte signed integer char
__
I*2 Two byte signed integer short
__
I*4 Four byte signed integer long
__
R*4 Four byte floating point float

STDF V4 – 2007 Specification 23

__
R*8 Eight byte floating point number long float (double)
__
B*6 Fixed length bit-encoded data char[6]
__
V*n Variable data type field:
 The data type is specified by a code in the first byte,
 and the data follows (maximum of 255 bytes)
__
B*n Variable length bit-encoded field: char[]
 First byte = unsigned count of bytes to follow
 (maximum of 255 bytes). First data item in least
 significant bit of the second byte of the array
 (first byte is count.)
__
D*n Variable length bit-encoded field: char[]
 First two bytes = unsigned count of

bits to follow (maximum of 65,535 bits).
First data item in least significant bit of the third
byte of the array (first two bytes are count). Unused
bits at the high order end of the last byte must be zero.

__
N*1 Unsigned integer data stored in a nibble. char

(Nibble = 4 bits of a byte). First item in low 4 bits,
second item in high 4 bits. If an odd number of nibbles
 is indicated, the high nibble of the byte will be zero.
Only whole bytes can be written to the STDF file.

__
kxTYPE Array of data of the type specified. TYPE[]

 The value of ‘k’ (the number of elements in the array)
 is defined in an earlier field in the record. For example,
 an array of short unsigned integers is defined as kxU*2.

__

STDF V4 – 2007 Specification 24

Optional Fields and Missing/Invalid Data
Certain fields in STDF records are defined as optional. An optional field must be present
in the record, but there are ways to indicate that its value is not meaningful, that is, that
its data should be considered missing or invalid. STDF V4 – 2007 builds on mechanisms
of STDF V4 for missing or invalid fields. It uses the same mechanism as the STDF V4
for indicating missing/invalid data as described below:

• Some optional fields have a predefined value that means that the data for the field
is missing. For example, if the optional field is a variable-length character string,
a length byte of 0 means that the data is missing. If the field is numeric, a value of
-1 may be defined as meaning that the data is missing.

• For other optional fields, all possible stored values, including -1, are legal. In this
case, the STDF specification for the record defines an Optional Data bit field.
Each bit is used to designate whether an optional field in the record contains valid
or invalid data. Usually, if the bit for an optional field is set, any data in the field
is invalid and should be ignored.

__
Data Type Missing/Invalid Data Flag
__
Variable-length string Set the length byte to 0
__
Fixed-length character string Fill the field with spaces.
__
Fixed-length binary string Set a flag bit in an Optional Data byte.
__
Time and date fields Use a binary 0.
__
Signed and unsigned integers Use the indicated reserved value
and floating point values or set a flag bit in an Optional Data byte.
__

However for the omission of the optional fields the new standard uses explicit control
flags/bits to indicate the absence of optional fields and the first missing optional field
does not mean that the rest of the optional fields in the records are missing as well.

STDF V4 – 2007 Specification 25

Continuation of Records
The amount of data required for some of the new record types will occasionally exceed
what can be accommodated in a single 65k record. To facilitate this expanded data
volume the concept of “continuation records” is introduced. Any number of continuation
records may be added after an initial record type. The continuation mechanism is
implemented by adding two fields immediate after the Record Subtype fields. These
fields are called REC_INDX and REC_TOT to implement an X of Y notation i.e. the
REC_INDX field indicates the index of a record among the REC_TOT number of
continuation records. Thus each record in a series of continuation records gets a unique
REC_INDX between 1 and REC_TOT. In addition for each field in a record that span
over multiple record, there is local and global count field associated with it (The exact
names of these fields depend on the record) that indicate how many items of that field are
present in the current record and how many items are there in total over all the
continuation records. Also, the semantics for the readers in such cases is to concatenate
all the items across the records to obtain the values for that field.

STDF V4 – 2007 Specification 26

STDF Record Types
This section contains the definitions for the STDF record types. The following
information is provided for each record type:

• a statement of function: how the record type is used in the STDF file.
• a table defining the data fields: first the standard STDF header, then the fields

specific to this record type. The information includes the field name, the data type
(see the previous section for the data type codes), a brief description of the field,
and the flag to indicate missing or invalid data (see the previous section for a
discussion of optional fields).

• any additional notes on specific fields.
• possible uses for this record type in data analysis reports. Note that this entry

states only where the record type can be used. It is not a statement that the reports
listed always use this record type, even if Teradyne has written those reports. For
definitive information on how any data analysis software uses the STDF file, see
the documentation for the data analysis software.

• frequency with which the record type appears in the STDF file: for example, once
per lot, once per wafer, one per test, and so forth.

• the location of the record type in the STDF file. See the note on “initial sequence”

STDF V4 – 2007 Specification 27

A note on Initial Record Sequences
For several record types, the “Location” says that the record must appear “after the initial
sequence.” The phrase “initial sequence” refers to the records that must appear at the
beginning of the STDF file. The requirements for the initial sequence are as follows:

• Every file must contain one File Attributes Record (FAR), one VUR, one Master
Information Record (MIR), one or more Part Count Records (PCR), and one
Master Results Record (MRR). All other records are optional.

• The first record in the STDF file must be the File Attributes Record (FAR).
• If one or more Audit Trail Records (ATRs) are used, they must appear

immediately after the FAR.
• Version Update Record (VUR) which is a required record for STDF V4 – 2007

must appear after the last ATR and before MIR
• The Master Information Record (MIR) must appear in every STDF file. Its

location must be after the FAR , ATRs (if ATRs are used) and VUR.
• If the Retest Data Record (RDR) is used, it must appear immediately after the

MIR.
• If one or more Site Description Records (SDRs) are used, they must appear

immediately after the MIR and RDR (if the RDR is used).

Given these requirements, every STDF V4 2007 must contain one of these initial
sequences:
FAR – VUR – MIR
FAR – ATRs – VUR – MIR
FAR – VUR – MIR – RDR
FAR – ATRs – VUR – MIR – RDR
FAR – VUR – MIR – SDRs
FAR – ATRs – VUR – MIR – SDRs
FAR – VUR – MIR – RDR – SDRs
FAR – ATRs – VUR – MIR – RDR – SDRs
All other STDF record types appear after the initial sequence.

STDF V4 – 2007 Specification 28

Version Update Record (VUR)
Function: Version update Record is used to identify the updates over version V4.

Presence of this record indicates that the file may contain records defined by
the new standard. This record is added to the major type 0 in the STDF V4.

Data Fields:

Field Names Data Type Field Description Missing/Invalid Data

Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (0)
REC_SUB: U*1 Record sub-type (30)
UPD_NAM C*n Update Version Name

Field Description:
UPD_NAM: This field will contain the version update name. For example the new
standard name will be stored as “V4–2007” string in the UPD_NAM field.

STDF V4 – 2007 Specification 29

A note on Header Records
STDF V4 -2007 leverages the records from the original STDF V4 specification for the
representation of header information related to device identification, Wafer identification
and Equipment identification. In particular it uses following records for that purpose:

• Master Information Record (MIR)
• Wafer Information Records (WIR)
• Wafer Result Record (WRR)
• Part Information Record (PIR)
• Part Results Record (PRR)
• Test Synopsis Record (TSR)
• Site Description Record (SDR)

These records are described next where the description has been copied from the original
specification for completeness sake. In the description, where the usage of certain fields
is modified is highlighted in blue.

STDF V4 – 2007 Specification 30

Master Information Record (MIR)
Function: The MIR and the MRR (Master Results Record) contain all the global

information that is to be stored for a tested lot of parts. Each data stream must
have exactly one MIR, immediately after the VUR. This will allow any data
reporting or analysis programs access to this information in the shortest
possible amount of time.

From the data model perspective it stores following pieces of information:

• Lot ID
• Test Software version
• Test Program version
• Test Flow ID
• Test Stage
• Test Facility ID
• Test Floor ID
• Tester ID

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (10)
SETUP_T U*4 Date and time of job setup
START_T U*4 Date and time first part tested
STAT_NUM U*1 Tester station number
MODE_COD C*1 Test mode code (e.g. prod, dev) space
RTST_COD C*1 Lot retest code space
PROT_COD C*1 Data protection code space
BURN_TIM U*2 Burn-in time (in minutes) 65535
CMOD_COD C*1 Command mode code space
LOT_ID C*n Lot ID (customer specified)
PART_TYP C*n Part Type (or product ID)
NODE_NAM C*n Name of node that generated data
TSTR_TYP C*n Tester type
JOB_NAM C*n Job name (test program name)
JOB_REV C*n Job (test program) revision number length byte = 0
SBLOT_ID C*n Sublot ID length byte = 0
OPER_NAM C*n Operator name or ID (at setup time) length byte = 0
EXEC_TYP C*n Tester executive software type length byte = 0
EXEC_VER C*n Tester exec software version number length byte = 0
TEST_COD C*n Test phase or step code length byte = 0
TST_TEMP C*n Test temperature length byte = 0
USER_TXT C*n Generic user text length byte = 0

STDF V4 – 2007 Specification 31

AUX_FILE C*n Name of auxiliary data file length byte = 0
PKG_TYP C*n Package type length byte = 0
FAMLY_ID C*n Product family ID length byte = 0
DATE_COD C*n Date code length byte = 0
FACIL_ID C*n Test facility ID length byte = 0
FLOOR_ID C*n Test floor ID length byte = 0
PROC_ID C*n Fabrication process ID length byte = 0
OPER_FRQ C*n Operation frequency or step length byte = 0
SPEC_NAM C*n Test specification name length byte = 0
SPEC_VER C*n Test specification version number length byte = 0
FLOW_ID C*n Test flow ID length byte = 0
SETUP_ID C*n Test setup ID length byte = 0
DSGN_REV C*n Device design revision length byte = 0
ENG_ID C*n Engineering lot ID length byte = 0
ROM_COD C*n ROM code ID length byte = 0
SERL_NUM C*n Tester serial number length byte = 0
SUPR_NAM C*n Supervisor name or ID length byte = 0

Field Description:

MODE_COD: Indicates the station mode under which the parts were tested. Currently
defined values for the MODE_COD field are:

A = AEL(Automatic Edge Lock) mode
C = Checker mode
D = Development / Debug test mode
E = Engineering mode (same as Development mode)
M = Maintenance mode
P = Production test mode
Q = Quality Control

All other alphabetic codes are reserved for future use by Teradyne. The characters 0 - 9
are available for customer use.

RTST_COD Indicates whether the lot of parts has been previously tested under the same
test conditions. Suggested values are:

Y = Lot was previously tested.
N = Lot has not been previously tested.
space = Not known if lot has been previously tested.
0 - 9 = Number of times lot has previously been tested.

PROT_COD User-defined field indicating the protection desired for the test data being
stored. Valid values are the ASCII characters 0 - 9 and A - Z. A space in this field
indicates a missing value (default protection).

CMOD_COD Indicates the command mode of the tester during testing of the parts. The
user or the tester executive software defines command mode values. Valid values are the
ASCII characters 0 - 9 and A - Z. A space indicates a missing value.

STDF V4 – 2007 Specification 32

TEST_COD A user-defined field specifying the phase or step in the device testing
process.

TST_TEMP The test temperature is an ASCII string. Therefore, it can be stored as
degrees Celsius, Fahrenheit, Kelvin or whatever. It can also be expressed in terms like
HOT, ROOM, and COLD if that is preferred.

STDF V4 – 2007 Specification 33

Wafer Information Record (WIR)
Function: Acts mainly as a marker to indicate where testing of a particular wafer begins

for each wafer tested by the job plan. The WIR and the Wafer Results Record
(WRR) bracket all the stored information pertaining to one tested wafer. This
record is used only when testing at wafer probe. A WIR/WRR pair will have
the same HEAD_NUM and SITE_GRP values.

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (2)
REC_SUB U*1 Record sub-type (10)
HEAD_NUM U*1 Test head number
SITE_GRP U*1 Site group number 255
START_T U*4 Date and time first part tested
WAFER_ID C*n Wafer ID length byte = 0

Field Description:

SITE_GRP: Refers to the site group in the SDR. This is a means of relating the wafer
information to the configuration of the equipment used to test it. If this information is not
known, or the tester does not support the concept of site groups, this field should be set to
255.

WAFER_ID: Is optional, but is strongly recommended in order to make the resultant
data files as useful as possible.

STDF V4 – 2007 Specification 34

Wafer Result Record (WRR)
Function: Contains the result information relating to each wafer tested by the job plan.

The WRR and the Wafer Information Record (WIR) bracket all the stored
information pertaining to one tested wafer. This record is used only when
testing at wafer probe time. A WIR/WRR pair will have the same
HEAD_NUM and SITE_GRP values.

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (2)
REC_SUB U*1 Record sub-type (10)
HEAD_NUM U*1 Test head number
SITE_GRP U*1 Site group number 255
FINISH_T U*4 Date and time last part tested
PART_CNT U*4 Number of parts Tested
RTST_CNT U*4 Number of parts Retested 4,294,967295
ABRT_CNT U*4 Number of aborts during testing 4,294,967295
GOOD_CNT U*4 Number of good (passed) parts tested 4,294,967295
FUNC_CNT U*4 Number of functional parts tested 4,294,967295
WAFER_ID C*n Wafer ID length byte = 0
FABWF_ID C*n Fab wafer ID length byte = 0
FRAME_ID C*n Wafer Frame ID length byte = 0
MASK_ID C*n Wafer mask ID length byte = 0
USR_DESC C*n Wafer description supplied by user length byte = 0
EXC_DESC C*n Wafer description supplied by exec length byte = 0

Field Description:

SITE_GRP: Refers to the site group in the SDR. This is a means of relating the wafer
information to the configuration of the equipment used to test it. If this information is not
known, or the tester does not support the concept of site groups, this field should be set to
255.

WAFER_ID: Is optional, but is strongly recommended in order to make the resultant
data files as useful as possible. A wafer ID in WRR supersedes Wafer ID found in WIR.

FABWF_ID: Is the ID of the wafer when it was in the fabrication process. This
facilitates tracking of wafers and correlation of yield with fabrication variations.

FRAME_ID: Facilitates tracking of wafers once the wafer has been through the saw step
and the wafer ID is no longer readable on the wafer itself. This is an important piece of
information for implementing an inkless binning scheme.

STDF V4 – 2007 Specification 35

Part Information Record (PIR)
Function: This record acts as a marker to indicate where testing for a particular part
begins for each part tested by the test program. The PIR and Part Results Record (PRR)
bracket all the stored information pertaining to one tested part.

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (5)
REC_SUB U*1 Record sub-type (10)
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number

Field Description:

HEAD_NUM, SITE_NUM: If a test system does not support parallel testing, and does
not have a standard way to identify its single test site or head, then these fields should be
set to 1. When parallel testing, these fields are used to associate individual datalogged
results (FTRs and PTRs) with a PIR/PRR pair. An FTR or PTR belongs to the PIR/PRR
pair having the same values for HEAD_NUM and SITE_NUM.

STDF V4 – 2007 Specification 36

Part Results Record (PRR)
Function: This record is used to identify the part for which datalog is generated. It is

used in conjunction with MIR and WIR to uniquely identify the part. In
particular following data model objects are stored in this record.

• XCOORD, YCOORD
• Electronic ID (Stored in PART_TXT)
• Sr. No (Stored in PART_ID)

The PRR and the Part Information Record (PIR) bracket all the stored
information pertaining to one tested part

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (5)
REC_SUB U*1 Record sub-type (20)
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
PART_FLG B*1 Part information flag
NUM_TEST U*2 Number of tests executed
HARD_BIN U*2 Hardware bin number
SOFT_BIN U*2 Software bin number 65535
X_COORD I*2 (Wafer) X coordinate -32768
Y_COORD I*2 (Wafer) Y coordinate -32768
TEST_T U*4 Elapsed test time in milliseconds 0
PART_ID C*n Part identification length byte = 0
PART_TXT C*n Part description text length byte = 0
PART_FIX B*n Part repair information length byte = 0

Field Description:

HEAD_NUM,SITE_NUM: If a test system does not support parallel testing, and does
not have a standard way to identify its single test site or head, then these fields should be
set to 1. When parallel testing, these fields are used to associate individual datalogged
results(FTRs and PTRs) with a PIR/PRR pair. An FTR or PTR belongs to the PIR/PRR
pair having the same values for HEAD_NUM and SITE_NUM.

X_COORD,Y_COORD: Have legal values in the range -32767 to 32767. A missing
value is indicated by the value -32768.
X_COORD,Y_COORD, PART_ID are all optional, but you should provide either the
PART_ID or the X_COORD and Y_COORD in order to make the resultant data useful
for analysis.

PART_FLG: Contains the following fields:

STDF V4 – 2007 Specification 37

bit 0: 0 = This is a new part. Its data device does not supersede that of any
previous device.
1 = The PIR, PTR, MPR, FTR, and PRR records that make up the
current sequence (identified as having the same HEAD_NUM and
SITE_NUM) supersede any previous sequence of records with the
same PART_ID. (A repeated part sequence usually indicates a
mistested part.)

bit 1: 0 = This is a new part. Its data device does not supersede that of
any previous device.

1 = The PIR, PTR, MPR, FTR, and PRR records that make up the
current sequence (identified as having the same HEAD_NUM and
SITE_NUM) supersede any previous sequence of records with the
same X_COORD and Y_COORD. (A repeated part sequence
usually indicates a mistested part.) Note: Either Bit 0 or Bit 1 can
be set, but not both. (It is also valid to have neither set.)

bit 2: 0 = Part testing completed normally
1 = Abnormal end of testing

bit 3: 0 = Part passed
 1 = Part failed

bit 4: 0 = Pass/fail flag (bit 3) is valid
1 = Device completed testing with no pass/fail indication (i.e., bit 3
is invalid)

bits 5 - 7: Reserved for future use — must be 0
HARD_BIN: Has legal values in the range 0 to 32767.

SOFT_BIN: Has legal values in the range 0 to 32767. A missing value is indicated by
the value 65535.

PART_FIX: This is an application-specific field for storing device repair information. It
may be used for bit-encoded, integer, floating point, or character information. Regardless
of the information stored, the first byte must contain the number of bytes to follow. This
field can be decoded only by an application-specific analysis program.

PART_TXT: This field is used store any text description of the part. This field will
be used also for storing the Electronic ID in this standard. Electronic ID will be
stored in ASCII form at the end of the existing part description and will be
separated by a colon. It is optional to store the Electronic ID, in that case the
PART_TXT will be used in the same way as in STDF V4.

PART_ID: This field is used to store part identification in ASCII form. The same
field will be used to store the Sr. No. It will be added at the end of existing PART_ID
string and will be separated by a colon. It is optional to add the part identification in
that case, the PSRT_ID will be used as before in STDF V4.

STDF V4 – 2007 Specification 38

Test Synopsis Record (TSR)

Function: Contains the test execution and failure counts for one parametric, functional,

or scan test in the test program. Also contains static information, such as test
name. The TSR is related to the Functional Test Record (FTR), the Parametric
Test Record (PTR), the Multiple Parametric Test Record (MPR), and the Scan
Test Record (STR) by test number, head number, and site number.

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (10)
REC_SUB U*1 Record sub-type (30)
HEAD_NUM U*1 Test head number See note
SITE_NUM U*1 Test site number
TEST_TYP C*1 Test type space
TEST_NUM U*4 Test number
EXEC_CNT U*4 Number of test executions 4,294,967,295
FAIL_CNT U*4 Number of test failures 4,294,967,295
ALRM_CNT U*4 Number of alarmed tests 4,294,967,295
TEST_NAM C*n Test name length byte = 0
SEQ_NAME C*n Sequencer(program segment/flow) name length byte = 0
TEST_LBL C*n Test label or text length byte = 0
OPT_FLAG B*1 Optional data flag See note
TEST_TIM R*4 Average test execution time in seconds OPT_FLAG bit2= 1
TEST_MIN R*4 Lowest test result value OPT_FLAG bit0= 1
TEST_MAX R*4 Highest test result value OPT_FLAG bit1= 1
TST_SUMS R*4 Sum of test result values OPT_FLAG bit4= 1
TST_SQRS R*4 Sum of squares of test result values OPT_FLAG bit5= 1

Field Description:

HEAD_NUM: If this TSR contains a summary of the test counts for all test sites, this
field must be set to 255.

TEST_TYP: Indicates what type of test this summary data is for. Valid values are:

P = Parametric test
F = Functional test
M = Multiple-result parametric test
S = Scan Test
space = Unknown

STDF V4 – 2007 Specification 39

EXEC_CNT,FAIL_CNT,ALRM_CNT: Are optional, but are strongly recommended
because they are needed to compute values for complete final summary sheets.

OPT_FLAG: Contains the following fields:

bit 0 set = TEST_MIN value is invalid
bit 1 set = TEST_MAX value is invalid
bit 2 set = TEST_TIM value is invalid
bit 3 is reserved for future use and must be 1
bit 4 set = TST_SUMS value is invalid
bit 5 set = TST_SQRS value is invalid
bits 6 - 7 are reserved for future use and must be 1

OPT_FLAG is optional if it is the last field in the record.

TST_SUMS,TST_SQRS: Are useful in calculating the mean and standard deviation for
a single lot or when combining test data from multiple STDF files

STDF V4 – 2007 Specification 40

Site Description Record (SDR)
Function: This record is used to identify the equipment in the test cell where the part was

tested and contains the configuration information for one or more test sites,
connected to one testhead, that compose a site group. Following data model
objects are stored in this record:

• Prober ID (HAND_ID)
• Probe Card ID (CARD_ID)
• Handler ID (HAND_ID)
• Loadboard ID (In LOAD_ID)

Data Fields:

Field Name Data

Type
Field Description

Missing/Invalid
Data Flag

REC_LEN U*2 Bytes of data following header
REC_TYP U*1 Record type (1)
REC_SUB U*1 Record sub-type (80)
HEAD_NUM U*1 Test head number
SITE_GRP U*1 Site group number
SITE_CNT U*1 Number (k) of test sites in site group
SITE_NUM kxU*1 Array of test site numbers
HAND_TYP C*n Handler or prober type length byte = 0
HAND_ID C*n Handler or prober ID length byte = 0
CARD_TYP C*n Probe card type length byte = 0
CARD_ID C*n Probe card ID length byte = 0
LOAD_TYP C*n Load board type length byte = 0
LOAD_ID C*n Load board ID length byte = 0
DIB_TYP C*n DIB board type length byte = 0
DIB_ID C*n DIB board ID length byte = 0
CABL_TYP C*n Interface cable type length byte = 0
CABL_ID C*n Interface cable ID length byte = 0
CONT_TYP C*n Handler contactor type length byte = 0
CONT_ID C*n Handler contactor ID length byte = 0
LASR_TYP C*n Laser type length byte = 0
LASR_ID C*n Laser ID length byte = 0
EXTR_TYP C*n Extra equipment type field length byte = 0
EXTR_ID C*n Extra equipment ID length byte = 0

Field Description:

SITE_GRP Specifies a site group number (called a station number on some testers) for
the group of sites whose configuration is defined by this record. Note that this is different
from the station number specified in the MIR, which refers to a software station only.
The value in this field must be unique within the STDF file.

STDF V4 – 2007 Specification 41

SITE_CNT,SITE_NUM, SITE_CNT tells how many sites are in the site group that the
current SDR configuration applies to. SITE_NUM is an array of those site numbers.

_TYP fields These are the type or model number of the interface or peripheral equipment
being used for testing:
HAND_TYP,CARD_TYP,LOAD_TYP,DIB_TYP,
CABL_TYP,CONT_TYP,LASR_TYP,EXTR_TYP

_ID fields These are the IDs or serial numbers of the interface or peripheral equipment
being used for testing:
HAND_ID,CARD_ID,LOAD_ID,DIB_ID,
CABL_ID,CONT_ID,LASR_ID,EXTR_ID

STDF V4 – 2007 Specification 42

Pattern Sequence Record (PSR)
Function: PSR record contains the information on the pattern profile for a specific

executed scan test as part of the Test Identification information. In particular it
implements the Test Pattern Map data object in the data model. It specifies
how the patterns for that test were constructed. There will be a PSR record for
each scan test in a test program. A PSR is referenced by the STR (Scan Test
Record) using its PSR_INDX field

Data Fields:

Field Names Data

Type
Field Description Missing/Invalid

Data Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (1)
REC_SUB: U*1 Record sub-type (90)
REC_INDX U*1 Record index # in context of total records

used to contain a complete PSR data set

REC_TOT U*1 Record Total records used to contain a
complete PSR data set

PSR_INDX U*2 PSR Record Index (used by STR records)
PSR_NAM C*n Symbolic name of PSR record length byte = 0
OPT_FLG B*1 Contains PAT_LBL, FILE_UID, ATPG_DSC,

and SRC_ID field missing flag bits and flag for
start index for first cycle number.

TOTP_CNT U*2 Count of total pattern file information sets in
the complete PSR data set

LOCP_CNT U*2 Count (k) of pattern file information sets in this
record

PAT_BGN kxU*8 Array of Cycle #’s patterns begins on (Cycle
#1 is 1st cycle executed)

PAT_END kxU*8 Array of Cycle #’s patterns stops at
PAT_FILE kxC*n Array of Pattern File Names
PAT_LBL K*C*n Optional pattern symbolic name OPT_FLG bit 0 = 1
FILE_UID kxC*n Optional array of file identifier code OPT_FLG bit 1 = 1
ATPG_DSC kxC*n Optional array of ATPG information OPT_FLG bit 2 = 1
SRC_ID kxC*n Optional array of PatternInSrcFileID OPT_FLG bit 3 = 1

Field Description:

REC_INDX: This is the index of the current PSR record as part of the current PSR set to
complete the description of patterns for a test

REC_TOT: Total number of PSR records that make the PSR set to described all the
patterns in a test.

PSR_INDX: This is a unique identifier for the set of PSRs that describe the patterns for a
scan test.

STDF V4 – 2007 Specification 43

PSR_NAM: It is a symbolic name of the test suite to which this PSR belongs. For
example with reference to figure 8, it would be stuck-at for the test_suite #1.

OPT_FLG: This flag is used to indicate the presence of optional fields. The bit
assignment for the optional fields in as shown in Table 3. If the bit is set to 1 the
corresponding optional field is considered missing

Table 3: Optional Field Flags in PSR
Bit Description
0 Symbolic pattern label missing
1 Unique File Identifier for the file is missing
2 Details of ATPG used to create the patterns
3 Identification of a pattern within a source file
4 The first cycle number is determined by the value of this bit.

TOTP_CNT: This field indicates the total number of pattern that make up a scan test
over all the PSRs. The description of all the patterns may not fit into a single PSR as
mention above. For continuation records this should be the same count as for the first
record (i.e. the final total)

LOCP_CNT: This field indicates the total number of patterns that are described in the
current PSR from a scan test.

NOTE 1 The next set of fields is repeated for each pattern that is contained in a scan test.
Each of these fields is stored in its own array of size LOCAL_CNT.

PAT_FILE : The name of the ATPG file from which the current pattern was created

PAT_BGN: The cycle count the specified ATPG pattern begins on. The 1st cycle
number is determined by the OPT_FLG (bit 4).

PAT_END : The cycle count the specified ATPG pattern ends on.

PAT_LBL: (Optional) This is a symbolic name of the pattern within a test suite. For
example, with reference to figure 8 it will be P1 for the pattern coming from file1.

FILE_UID: (Optional) - Unique character string that uniquely identifies the file. This
field is provided as a means to additionally uniquely identify the source file. The exact
mechanism to use this field is decided by the ATPG software, which will also provide
this piece of information in the source files during the translation process.

SRC_ID: (Optional) - The name of the specific PatternExec block in the source file. In
case there are multiple patterns being specified in the source file e.g. multiple
PatternExec blocks in STIL, this field specifies the one, which is the source of the pattern
in this PSR
ATPG_DSC (Optional) – This field intended to be used to store any ASCII data that can
identify the source tool, time of generation etc.

STDF V4 – 2007 Specification 44

Scan Test Record (STR)
Function: Scan Test Record (STR) is a new record that is added to the major record type

15 category (Data Collected Per Test Execution). This is the same category
where functional and parametric fail records exist. Thus the scan test record
becomes another test record type in this category.

It contains all or some of the results of the single execution of a scan test in
the test program. It is intended to contain all of the individual pin/cycle
failures that are detected in a single test execution. If there are more failures
than can be contained in a single record, then the record may be followed by
additional continuation STR records.

In this new record some fields have been brought over from the functional test
record and some new fields have been added to handle the scan test data.
Table 4 shows the structure of the STR at a conceptual level.

Table 4: STR Record Structure

Flags for Optional Fields

Test Setup Information

Validation and Synchronization
Information

Z-handling, Data Field Map

Test Condition Specification
with Optional Fields

Specification

Datalog Format
Specification

Datalog with Per fail
optional Fields

Scan_Freq, Capture Frequency,
Voltage, Optional

Buffer fail status, Global Mask Status,
Fail limit Info,

Test No, Test Head Number, Test Site,
Test Flags Etc (Brought over from

FTR)

FAL Flag, Mask Map Flag

Class of Information Information Fields

Pin Info, Pattern/Cycle no/FF Name,
Measured Data, Expected data, Fail

data, optional data

Continuation Fields (X of Y)

STDF V4 – 2007 Specification 45

The fields in the STR records correspond to various categories of table 4. Table below
shows the details of an STR record. The description of the STR fields is classified
according to those categories in Table 4.

Data Fields:

Field Names Data

Type
Field Description Missing/Invalid

Data Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (15)
REC_SUB: U*1 Record sub-type (30)
REC_INDX U*1 Record index # in context of total

records used to contain a complete
STR data set

REC_TOT U*1 Record Total records used to contain
a complete STR data set

TEST_NUM U*4 Test Number
HEAD_NUM U*1 Test head number
SITE_NUM U*1 Test site number
PSR_REF U*2 PSR Index (Pattern Sequence

Record)

TEST_FLG B*1 Test flags (fail, alarm, etc.)
LOG_TYP C*n User defined description of datalog length byte = 0
TEST_TXT C*n Descriptive text or label length byte = 0
ALARM_ID C*n Name of alarm length byte = 0
PROG_TXT C*n Additional Programmed information length byte = 0
RSLT_TXT C*n Additional result information length byte = 0
Z_VAL U*1 Z Handling Flag
FMU_FLG B*1 MASK_MAP & FAL_MAP field

status & Pattern Changed flag

MASK_MAP D*n Bit map of Globally Masked Pins FMU_FLG bit 0 =
0 OR bit1 = 1

FAL_MAP D*n Bit map of failures after buffer full FMU_FLG bit 2 =
0 OR bit3 = 1

CYC_CNT U*8 Total cycles executed in test
TOTF_CNT U*4 Total failures (pin x cycle) detected

in test execution

TOTL_CNT U*4 Total fails logged across the
complete STR data set

CYC_BASE U*8 Cycle offset to apply for the values
in the CYCL_NUM array

BIT_BASE U*2 BIT_POS offset during capture
cycles in the pattern/chain/bit
logging. (>> any valid BIT_POS and
to be set by the environment)

STDF V4 – 2007 Specification 46

DATA_FLG B*1 Specifies the presence of defined
data arrays in this record

COND_CNT U*2 Count (g) of Test Conditions and
optional data specifications in
present record

LOCL_CNT U*4 Count (k) of fails logged in this
record

LIM_CNT U*2 Count (j) of LIM Arrays in present
record, 1 for global specification

DATA_BIT U*1 Number of (1,2,4,8) bits used per
failure in the CAP_DATA,
NEW_DATA, & EXP_DATA fields

DATA_CHR C*n string containing 2, 4, 8, or 16
characters indexed by the bits
specified in DATA_BIT

length byte = 0

DATA_CNT U*2 Count (m) of number of data bytes
recorded in present record. m =
[(LOCL_CNT *DATA_BIT)/8)]

USR1_LEN U*1 Length (f) for the data type in USR1
field (f can only be 0,1, 2, or 4)

USR2_LEN U*1 Length (f) for the data type in USR2
field (f can only be 0,1, 2, or 4)

USR3_LEN U*1 Length (f) for the data type in USR3
field (f can only be 0,1, 2, or 4)

TXT_LEN U*1 Length (f) of each string entry in
USER_TXT array

LIM_INDX jxU*2 Array of PMR indexes that require
unique limit specifications

LIM_CNT=0

LIM_SPEC jxU*4 Array of fail datalogging limits for
the PMRs listed in LIM_INDX

LIM_CNT=0

COND_NAM gxC*n Array of test condition names COND_CNT=0
COND_VAL gxC*n Array of test condition value COND_CNT=0
CYCL_NUM kxU*4 Array of cycle numbers relative to

CYC_BASE
DATA_FLG bit0=1

PMR_INDX kxU*2 Array of PMR Indexes (All
Formats)

DATA_FLG bit1=1

CHN_NUM kxU*2 Array of Chain No for FF Name
Mapping

DATA_FLG bit2=1

CAP_DATA mxU*1 Array of captured data DATA_FLG bit3=1
EXP_DATA mxU*1 Array of expected vector data DATA_FLG bit4=1
NEW_DATA mxU*1 Array of new vector data DATA_FLG bit5=1
PAT_NUM kxU*4 Array of pattern # (Ptn/Chn/Bit

format)
DATA_FLG bit6=1

BIT_POS kxU*4 Array of chain bit positions
(Ptn/Chn/Bit format)

DATA_FLG bit7=1

USR1 kxU*f Array of user defined data for each USR1_LEN= 0;

STDF V4 – 2007 Specification 47

logged fail
USR2 kxU*f Array of user defined data for each

logged fail
USR2_LEN= 0;

USR3 kxU*f Array of user defined data for each
logged fail

USR3_LEN= 0;

USER_TXT kxC*f Array of user defined fixed length
strings for each logged fail

TXT_LEN = 0

Field Description:

TEST_NUM: It is the identifier for the test for which data is collected. It should be
populated with the Test Number.

HEAD_NUM,SITE_NUM: If a test system does not support parallel testing, and does
not have a standard way of identifying its single test site or head, these fields should be
set to 1. When parallel testing, these fields are used to associate individual datalogged
results with a PIR/PRR pair. An FTR belongs to the PIR/PRR pair having the same
values for HEAD_NUM and SITE_NUM.

TEST_FLG Contains the following fields:

bit 0: 0 = No alarm
1 = Alarm detected

bit 1: Reserved for future
bit 2: 0 = Test result is reliable

1 = Test result is unreliable
bit 3: 0 = No timeout

1 = Timeout occurred
bit 4: 0 = Test was executed

1 = Test not executed
bit 5: 0 = No abort

1 = Test aborted
bit 6: 0 = Pass/fail flag

1 = Test completed
bit 7: 0 = Test passed

1 = Test failed

LOG_TYP: This is a user defined description of the datalog type to indicate what type of
information is stored in the current record.

TEST_TXT: This is a user given description name of the test

ALARM_ID If the alarm flag (bit 0 of TEST_FLG) is set, this field can optionally
contain the name or ID of the alarm or alarms that were triggered. The names of these
alarms are tester-dependent.

STDF V4 – 2007 Specification 48

PROG_TXT: This is also a user provided information. Any additional information
regarding programming can be provided.

RSLT_TXT: This is also a user provided information. Any additional information about
the results can be provided

PSR_REF: This is the reference to PSR(s) that describes the patterns for the test for
which the data log is stored in the current STR. In case the patterns are described by
multiple continuation PSRs then the reference would contain the index of the the first
PSR.

Z_VAL: This is the flag to indicate the how the Z (Dual side comparison) values were
handled on the ATE. Table 5 shows the modes that are supported. The first entry is for
the ATEs which cann’t perform dual side comparison. While the rest of the entries are to
be used by the ATEs that can and in that case it is meant to communicate how the Z-
character was mapped in the datalog. Enumeration value '3' (Z mapped to Z) means that a
compare to mid-level (between L and H state) is done for 'expected Z' in the patterns.
This typically requires a dual-threshold comparator combined with an active load circuit
on the ATE side, to pull the device output signals to mid-level when its output drivers are
tristated.

Table 5: Z Handling Flags

Enumeration value condition

0 Not handled
1 Z mapped to L
2 Z mapped to H
3 Z mapped to Z
4 Z mapped to X

FMU_FLG: This field describes the status of the fails after logging, Mask Map fields in
STR as well as the flag to indicate pattern modified flag. Bits 0 and 1 indicate the status
of the FAL_MAP and the Bit 2 and 3 described the status of Mask map. Table 6 shows
the modes of the FAL_MAP and Table 7 shows the modes for Mask map

Table 6: FAL MAP Flag Description
FMU_FLG:bit 0 FMU_FLG:bit 1 Description

0 0 No information of buffer status is provided
0 1 All fails were logged, FAL_MAP not present
1 0 FAL_MAP present
1 1 Unused

Table 7: Mask Map Flag Description

FMU_FLG:bit 2 FMU_FLG:bit 3 Description
0 0 Mask map not present; No pin is globally

masked

STDF V4 – 2007 Specification 49

0 1 Use the previous MASK_MAP definition
 (MASK_MAP in the current record absent)

1 0 Use the MASK_MAP in the current record
 and make is persistent

1 1 Unused

Bit 4 is used to indicate if the patterns on the ATE have been modified compared to the
previous image. If bit 4 is set to 1 then indicates that patterns have been modified and a 0
means no change

MASK_MAP: This optional field contains an array of bits corresponding to the PMR
index numbers of the comparators that were disabled during the test. The 1st bit
corresponds to PMR index 1, the second bit corresponds to PMR index 2 and so on. Each
comparator that is disabled will have it's corresponding PMR index bit set to 1. (Note that
this field applies to the present record only plus any following continuation STR records).
If this field is missing, then it is assumed that conventional pin enabling as defined in the
source pattern source file specified in the referenced PSR records apply. The
MASK_MAP fields are controlled by the Mask Map Fail bits in FMU_FLG and the
behavior is described in Table 7

FAL_MAP (Failures After Logging Map): : This is an optional field that contains an array
of bits corresponding to the PMR index numbers of the pins that had any failure after the
fail data logging was stopped during the test. The 1st bit corresponds to PMR index 1, the
second bit corresponds to PMR index 2 and so on. Each pin that has at least one failure
will have its corresponding PMR index bit set to 1. (Note that this field applies to the
present record only plus any following continuation STR records). If this field is missing,
the it is assumed that conventional pin enabling as defined in the source pattern source
file specified in the referenced PSR records apply. The FAL_MAP field is controlled by
the FAL map bits in FMU_FLG and the behavior is described in Table 6.

Validation and Synchronization Fields

CYC_CNT: The total number of cycles that were executed in this test. If 0 then it should
be inferred that this value was not determinable

TOTF_CNT: The total number of failures that were detected in this test, logged or not.
A failure is defined as a pin and cycle, such as in three pins failed in the same cycle, that
would be counted as 3 failures. If 0 then it should be inferred that this value was not
determinable

TOTL_CNT: The total number of failures that were detected and loggeed in this test. A
failure is defined as a pin and cycle, such as in three pins failed in the same cycle, that
would be counted as 3 failures. This count includes the total failures from the test
execution and includes any following continuation STR records.

STDF V4 – 2007 Specification 50

CYC_BASE: This field is of type U*8 and contains the offset for the cycle numbers in
the fail log. This mechanism allows only U*4 values for the cycle numbers in the fail log
(vs U*8) and thus reduces the data volume. The actual cycle number for the fail log
entries would be CYC_BASE+ <fail Cycle No in the log>. The cycle numbers are the
ATPG cycle numbers i.e. in case of multiple ATPG cycles being represented in a tester
cycle the tester cycle numbers will have to be decoded into ATPG cycles.

BIT_BASE: This field is of type U*2 and contains the offset for the bit positions in the
fail log for the capture cycles in the pattern/chain/bit format. Please note that in the
pattern/chain/bit format the BIT_POS does not correspond to any scan chain position
during the capture cycles. Therefore a separate number space is created for the BIT_POS
values during the capture cycles to avoid confusion with the valid BIT_POS across all the
scan chains.

DATA_FLG: This field is used as the mask for the datalog fields i.e. each bit in the
DATA_FLG corresponds to a field in the datalog. If a bit in DATA_FLG is set to a 1
then the corresponding field is absent in the failure datalog that follows. Table 8 Shows
the mapping of DATA_FLG bits to the datalog fields:

Table 8: Data Flag field Description
Bit position Corresponding Field
0 CYC_NUM
1 PMR_INDX
2 CHN_NUM
3 CAP_DATA
4 EXP_DATA
5 NEW_DATA
6 PAT_NUM
7 BIT_POS

The fields in this table are described later in the datalog section.

LOCL_CNT: This is the count of the failures that are logged in the current STR record.
Please note that the total number of failures for device may require multiple STR records
to store them.

LIM_CNT: This field specifies the number of pins for which the fail datalog limits
specification is provided in the record.

DATA_BIT: This field indicated the number of bit used to represent the captured data
(CAP_DATA), pattern/expected data (EXP_DATA) and modified data (NEW_DATA).
The value of this field determines the size of the array required to store the respective
data. The possible values for that this field can have is (1,2,4,8) with following
convention.

• If 8 bits are used then the value in the byte represents the waveform character
itself .

STDF V4 – 2007 Specification 51

• For 1,2 and 4 bits cases, a mapping table (DATA_CHR) is provided in the STR
record to map the values in the array to corresponding waveform characters.

• For 8 bit cases, the value is assumed to be the waveform character (ASCII)
• For CAP_DATA any of the possible values (1, 2, 4, or 8) can be used
• For EXP_DATA and NEW_DATA only values possible are 4 or 8.

DATA_CHR: This field contains the mapping table for converting bits in the log to the
corresponding waveform character as mentioned above. It is organized as a string where
byte of the string contains the waveform character corresponding the bits in the binary
order.

DATA_CNT: This field contains the size of the array in bytes (U*1 used as a byte) to
represent CAP_DATA, EXP_DATA and NEW_DATA as mentioned above. Its value is
computed by the expression ceiling((LOCL_CNT*DATA_BIT)/8).

USR1_LEN, USR2_LEN,USR3_LEN: These fields define the data field type for the
user define fields USR1, USR2 and USR3 respectively. They can have the values defined
in the table below with their corresponding data size

Table 9: User Defined Optional Field Type Selection
USR<1,2,3>_LEN Value Data Type
0 User defined field is not present

1 U*1

2 U*2

4 U*4

TXT_LEN: This field specifies the length of the optional string arrays in the datalog. If
this is set to 0 then the optional field USER_TXT is considered missing in the record..

LIM_INDX: This is an array which contains the PMR indexes of the pins for which the
fail logging limits is provided. Please note that the first location in this array is location 0
and is reserved for indicating all pins or default pins. The number of entries in this array
is specified by the LIM_CNT described above.

LIM_SPEC: This array contains the fail log limits for the pins which are listed in the
LIM_INDX array. The first location in this array is, location 0 and contain the value that
is the default value that is applied to all the pins for which an explicit limit is not
specified in this array. Thus in global case where a single limit applied to all the pins, this
array contains only one element the element at location 0. The number of entries in this
array is specified by the LIM_CNT described above.

STDF V4 – 2007 Specification 52

Test Condition Specification

Test Conditions are specified using (Condition, Value) pairs using the COND_NAM and
COND_VAL fields. The conditions are represented in ASCII in these arrays.

COND_CNT: This is the count of how many conditions are specified in the
COND_NAM and COND_VAL fields for the test.

COND_NAM: This is array where the names of the conditions are stored for which the
values are specified in the next field.

COND_VAL: This is an array which contains the values for the conditions listed in
COND_NAM array. Please note that the values are stored in ASCII. Expressions are also
allowed in this array, however if an expression is use for a value then it must start with a
‘=’ sign and the expression is stored in ASCII as well. The processing of the expression is
optional for the readers and it can be done by detecting the ‘=’ symbol.

The standard reserves the following two COND_NAM keywords.

 SHIFT_FREQ: The shift frequency for the scan test.
 CAPTURE_FREQ: The capture frequency for the scan test.

There is one exception to the test condition specification and that is Temperature
specification. Since, the temperature is more of a global test condition and a field exist in
MIR to represent that, the temperature does not need to be present in the STR. The
standard however does not preclude one from putting another temperature parameter in
the test conditions array mentioned above

Datalog

The fail datalog section of the record is organized as a super record which can support
storing of each of the data fields described below. Each of these fields can however be
removed by setting the appropriate bits in the DATA_FLG field as mentioned above. The
fields are organized as one array for each field. i.e. the STR record contains one array of
the element for a particular field that is not masked in the DATA_FLG. The number of
elements in these arrays is specified by the LOCL_CNT and DATA_CNT fields.

CYC_NUM: An array of cycle numbers (U*4) that correspond to the number of failures
logged in this record when logging in the "Cycle" mode (vs. the "Pattern" mode). The
first cycle executed is determined by the OPT_FLG (bit 3) in PSR record for the pattern.
Please note that the CYC_NUM is relative to the CYC_BASE field described earlier and
the actual cycle for the fail log entries would be CYC_BASE + <fail Cycle No in the
log>. The size of this array is specified in the LOCL_CNT field.

STDF V4 – 2007 Specification 53

PMR_INDX: An array of PMR indexes (U*2) that correspond either to the CYC_NUM
array or to the PAT_NUM array. The size of this array is specified in the LOCL_CNT
field.

CHN_NUM: An array of scan chain number at which the failure was observed. The size
of this array is specified in the LOCL_CNT. The main purpose of this field for supporting
the direct scan cell name based logging. This filed along with the BIT_POS should be
used to find the CNR record (described later) that contains the scan cell name
corresponding to this CHN_NUM and BIT_POS. The scan chain numbering is decided
by the user environment. This field optionally can also be used with the PMT_INDX to
store corresponding chain numbers in Cycle based on Pattern/Chain/Bit based fail
logging .

CAP_DATA: An array of 1 byte characters that correspond to the CYC_NUM ("Cycle"
mode") or PAT_NUM ("Pattern Mode") entries that indicate the "captured" data state.
This function is generally the same as the EXP_DATA array except is intended to infer
that this data does not represent a failure, but rather the data states "captured" by the
tester, e.g. in a scan data dump application. The size of this array is specified in the
DATA_CNT field.

EXP_DATA: An array of 1 byte characters that correspond to the CYC_NUM ("Cycle"
mode") or PAT_NUM ("Pattern Mode") entries that indicate the data state that was
specified in the source pattern file for this specific pin and Cycle or Pattern/Bit. The size
of this array is specified in the DATA_CNT field. This data field has multiple
applications:

1. Can be used when it is required to provide the expect data associated with each
failure. This can be used to provide validation (when required) of the expected
data for a cycle #' on the ATE to the expected data in the source pattern file (as a
note: Generally only a few initial representative cycles would be required for this
function, and only once in an STDF file for each specific PSR utilization.)

2. Can also be used to represent the "Old" data states when used in conjunction with
the following "NEW_DATA array when transmitting an STR record for the
purposes of defining test pattern modifications

NEW_DATA: An array of 1 byte characters that correspond to the CYC_NUM ("Cycle"
mode") or PAT_NUM ("Pattern Mode") entries that indicate any test pattern data
modifications made to the original data in the source patterns. The size of this array is
specified in the DATA_CNT field.

PAT_NUM: When used in the "Pattern" format, an array of integers (U*4) specifying
the pattern number. The size of this array is specified in the LOCL_CNT field.

BIT_POS: When used in the "Pattern" format, an array of 4 byte integers specifying the
bit position in the scan chain. The 1st bit position is always "1". This field can also be
used in conjunction with the CHN_NUM field to support the applications where Flip

STDF V4 – 2007 Specification 54

Flop name needs to be derived using SSR. The CHN_NUM and BIT_POS together will
be used as an index in the SSR table for getting the Flip Flop name in that case. The size
of this array is specified in the LOCL_CNT field.

USR1, USR2, USR3: These are optional user defined fields. The presence and the type
of these fields are defined by the corresponding USR1_LEN, USR2_LEN and
USR3_LEN fields as mentioned earlier. The size of this array is specified in the
LOCL_CNT field.

USER_TXT: This is an optional fixed length text field that can be added to the datalog
with each fail. The length of this field is same for each fail in the datalog and is indicated
by the TXT_LEN field in the STR record. The size of this array is specified in the
LOCL_CNT field.

STDF V4 – 2007 Specification 55

Name Map Record (NMR)
Function: This record contains a map of PMR indexes to ATPG signal names. This

record is designed to allow preservation of ATPG signal names used in the
ATPG files through the datalog output. This record is only required when the
standard PMR records do not contain the ATPG signal name

Data Fields:

Field Names Data

Type
Field Description Missing/Invalid

Data Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (1)
REC_SUB: U*1 Record sub-type (91)
REC_INDX U*1 Record index # in context of total

records used to contain a complete
NMR map set

REC_TOT U*1 Record Total records used to contain a
complete NMR map set

TOTM_CNT U*2 Count of PMR indexes and
ATPG_NAM entries

LOCM_CNT U*2 Count of (k) PMR indexes and
ATPG_NAM entries in this record

PMR_INDX kxU*2 Array of PMR indexes
ATPG_NAM kxC*n Array of ATPG signal names

REC_INDX: Index within all the REC_TOT number of NMR records that store the
mapping table, starting at 1.

REC_TOT: Total number of NMR records that are required to store the mapping table.

TOTM_CNT: This the count of total number of entries in the mapping table across all
the NMR records

LOCM_CNT: The count of number of entries in the current NMR record.

PMR_INDX: It is the array of PMR indexes for which the ATPG names are provided

ATPG_NAM: It is the array ATPG signal names corresponding to the pin in
PMR_INDX array.

STDF V4 – 2007 Specification 56

Scan Cell Name Record (CNR)
Function: This record is used to store the mapping from Chain and Bit position to the

Cell/FlipFlop names. A CNR record should be created for each Cell for which
a name mapping is required. Typical usage would be to create a record for
each failing cell/FlipFlop. A CNR with new mapping for a chain and bit
position would override the previous mapping.

Data Fields:

Field Names Data

Type
Field Description Missing/Invalid

Data Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (1)
REC_SUB: U*1 Record sub-type (92)
CHN_NUM U*2 Chain number. Referenced by the

CHN_NO array in an STR record

BIT_POS U*2 Bit position in the chain
CELL_NAM S*n Scan Cell Name

Field Description:

CHN_NUM: This is the array for the chain identification for the target Flip Flop for
which the name is provided in the table.

BIT_POS: This is an array for the bit position within the chain identified by the
CHAIN_NO field for the target Flip Flop for which the name is provided in the table.

CELL_NAM: The is an array name of the of Flip Flop at the CHN_NUM and
BIT_POS. Please note the type of this field is S*n where the length of the Flip Flop name
is stored in the first two bytes and then the name follows.

STDF V4 – 2007 Specification 57

Scan Structure Record (SSR)
Function: This record contains the Scan Structure information normally found in a STIL

file. The SSR is a top level Scan Structure record that contains an array of
indexes to SCR records which contain the chain descriptions.

Data Fields:

Field Names Data

Type
Field Description Missing/Invalid

Data Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (1)
REC_SUB: U*1 Record sub-type (93)
SSR_NAM C*n Name of the STIL Scan Structure for

reference
Length byte = 0

CHN_CNT U*2 Count (k) of number of Chains listed
in CHN_LIST

CHN_LIST kxU*2 Array of SCR Indexes

Field Descriptions:

SSR_NAM: This is a ASCII unique name for the scan structure record that is normally
provided by the STIL (IEEE 1450) file.

CHN_CNT: It is the count of number of scan chains in a scan structure.

CHN_LIST: It is an array of index of each chain that is part of this scan structure. No
particular order of the scan chain indexes is specified by the standard.

STDF V4 – 2007 Specification 58

Scan Chain Description Record (SCR)
Function: This record contains the description of a scan chain in terms of its input,

output, number of cell and clocks. Each SCR record contains description of
exactly one scan chain. Each SCR is uniquely identified by an index.

WARNING: THESE RECORDS COULD RESULT IN A LOT OF DATA
VOLUME. PLEASE USE CAUTION.

Data Fields:
Field Names Data

Type
Field Description Missing/Invalid

Data Flag
REC_LEN: U*2 Bytes of data following header
REC_TYP: U*1 Record type (1)
REC_SUB: U*1 Record sub-type (94)
REC_INDX U*1 Record index # in context of total

records used to contain a complete
chain data set

REC_TOT U*1 Record Total records used to contain a
complete chain data set

SCR_INDX U*2 SCR Index
CHN_NAM C*n Chain Name Length byte = 0
TOTS_CNT U*2 Chain Length (# of scan cells in

chain)

LOCS_CNT U*2 Count (k) of scan cells listed in this
record

SIN_PIN U*2 PMR index of the chain's Scan In
Signal

0

SOUT_PIN

U*2 PMR index of the chain's Scan Out
Signal

0

MSTR_CNT U*1 Count (m) of master clock pins
specified for this scan chain

SLAV_CNT U*1 Count (n) of slave clock pins specified
for this scan chain

M_CLKS mxU*2 Array of PMR indexes for the master
clocks assigned to this chain

MSTR_CNT=0

S_CLKS nxU*2 Array of PMR indexes for the slave
clocks assigned to this chain

SLAV_CNT=0

INV_VAL U*1 0: No Inversion, 1: Inversion 255
CELL_LST kxS*n Array of Scan Cell Names LOCS_CNT=0

STDF V4 – 2007 Specification 59

Field Descriptions:

SCR_INDX: This is a unique number assigned to each SCR. It is used by the SSR

record to reference a particular SCR.

CHN_NAM: This is an optional ASCII unique name for the scan chain (user

defined or derived/copied from ATPG files).

TOTS_CNT: The number of scan cells contained within the scan chain

LOCS_CNT: The number of scan cells listed in this record (the others are listed in

continuation SCR records)

SIN_PIN: The PMR record index for the chain’s Scan In signal

SOUT_PIN: The PMR record index for the chain’s Scan Out signal

MSTR_CNT: The # of master clock pins assigned to the scan chain

SLAV_CNT: The # of slave clock pins assigned to the scan chain

M_CLKS: An optional array of PMR indexes for the chain’s master clock pins

The length of this array is specified in the MSTR_CNT field

S_CLKS: An optional array of PMR indexes for the chain’s slave clock pins

The length of this array is specified in the SLAV_CNT field.

INV_VAL: A Boolean value to indicate if the Scan_Out signal is inverted from the

Scan_In signal. A 0 value indicated no inversion. A value of 255
indicates unknown status.

CELL_LST: The array of scan cell names.

STDF V4 – 2007 Specification 60

Appendix

A. ATDF Representation

 ATDF is the ASCII representation of the binary STDF. ATDF representation will have
the same format as the V4 specification i.e.

Field name: <Value>
….
…..
…..
Field name: <Value>

The field names are the names that are mentioned in the tables for each field. The value
will be the value of each field.

STDF V4 – 2007 Specification 61

B. Data Model to STDF Record Mapping Table
The following table shows the mapping of data model objects onto STDF record.
Please note that the information in the data model object in some cases is spread over
multiple STDF records

Data Object Data Field Mapped

Record
Mapped Field Note

Design
Information

 Design Netlist
Name

MIR DSGN_REV

 Scan Structure
Description

SSR

 Scan Structure
Name

SSR SSR_NAM

 Num of Scan
Chains

SSR CHN_CNT

 Chain
Descriptions

SSR CHN_LIST List of chain
description records

 Scan Chain
Description

SCR

 Chain ID SCR SCR_INDX
 Chain Name SCR CHN_NAM
 Scan Len SCR TOTS_CNT
 Scan In SCR SIN_PIN
 Scan Out SCR SOUT_PIN
 Master Clock(s) SCR MSTR_CNT,

M_CLKS

 Slave Clock(s) SCR SLAV_CNT,
S_CLKS

 Inversion SCR INV_VAL
Device
Identification

 Lot ID MIR LOT ID
 Wafer ID WIR/WRR WAFER_ID
 X-Coord PRR X_COORD
 Y-Coord PRR Y_COORD
 Part Num PRR
 Electronic ID PRR PART_TXT Added as string at the

end of existing
information

 Serial Number PRR PART_ID Added as string at the
end of existing
information

Equipment

STDF V4 – 2007 Specification 62

Identification
 Site ID MIR FACIL_ID Same as V4
 TestCell ID MIR FLOOR_ID Same as V4
 Tester ID MIR SERL_NUM Same as V4
 TestHead ID WIR HEAD_NUM,

SITE_GRP
Same as V4

 Probe Card ID SDR CARD_TYP,
CARD_ID

Same as V4

 Prober ID SDR CONT_TYP,
CONT_ID

Same as V4

 Loadboard ID SDR LOAD_TYP,
LOAD_ID

Same as V4

 Handler ID SDR CONT_TYP,
CONT_ID

Same as V4

Test
Identification

 Test Program ID
 Test Stage ID
 Test Suite ID STR TEST_NUM
 Test PatternMap PSR
 Number of

Patterns
PSR TOTP_CNT

 Source File ID PSR PAT_FILE
 Pattern In File PSR SRC_ID
 Unique File

Qualifier
PSR FILE_UID

 Start Cycle PSR PAT_BGN
 End Cycle PSR PAT_END
 ATPG_REV PSR ATPG_DSC

Test Condition
 Temp MIR TST_TMP
 Shift Freq STR
 Capture Freq STR
 User Defined STR

COND_CNT
COND_NAM
COND_VAL

Validation and
Synchronization

 Total Fails STR TOTF_CNT
 Total Logged

Fails
STR TOTL_CNT

 Total Cycles STR CYC_CNT
 Buffer Depth STR LIM_CNT,

LIM_PRMS,
LIM_SPK

 Mask Map STR FMU_FLG,MA
SK_MAP

 Fails After Buffer
Full

STR FMU_FLG,
FAL_MAP

 PatternsModified

STR FMU_FLG (bit
4)

STDF V4 – 2007 Specification 63

 ATPG Signal
name map

NMR

 ATPG Signal
names

NMR ATPG_NAM

Format
Specification

 Z-Handling Flag STR Z_VAL
 Fail Datalog

Format
STR DATA_FLG,

USR_FLG

Datalog
 Cycle Num STR CYC_BASE,

CYCL_OFST

 Pin STR PMR_INDX
 Captured Data STR CAP_DATA
 Expected Data STR EXP_DATA
 New Data STR NEW_DATA
 Pattern Num STR PAT_NUM
 Chain Num STR CHN_NO
 Bit Position STR BIT_POS
 Optional Data 1

(Type - U*1)
USER1_U1

 Optional Data 1
(Type – U*2)

USER1_U2

 Optional Data 1
(Type U*4)

STR

USER1_U4

Only one of these
types can be used at a
time i.e. these are
mutually exclusive

 Optional Data 2
(Type - U*1)

USER2_U1

 Optional Data 2
(Type – U*2)

USER2_U2

 Optional Data 2
(Type U*4)

STR

USER2_U4

Only one of these
types can be used at a
time i.e. these are
mutually exclusive

 Optional Data 3
(Type - U*1)

USER3_U1

 Optional Data 3
(Type – U*2)

USER3_U2

 Optional Data 3
(Type U*4)

STR

USER3_U4

Only one of these
types can be used at a
time i.e. these are
mutually exclusive

STDF V4 – 2007 Specification 64

C Application Primer and Examples
This section provides the reader with some usage examples of datalogging scan
test failures using the new record structures available in STDF V4-2007.

The following depicts an example STDF record sequence for 2 devices where two
scan tests are applied to each device. This record exemplifies a typical minimum
configuration and does not deploy all of the new STDF records added. Note that in
this example multiple records are indicated in some cases. This is because some
record data sets will exceed the maximum STDF record size of 65,536 bytes. To
accommodate this, the NMR, STR, PSR, and SCR records feature the ability to
concatenate multiple records together in order to contain all of the required
information of a single data set.

Record Type Comments

FAR File Attributes Record (Required)

VUR Version Update Record (Required for V4-2007)

MIR Master Information File (Required)

PMR(s) Signal Pin Records (note 1)

NMR List of Scan out Pins using ATPG signal names (note 1)

PSR Applies to test #1

PSR(s) Applies to test #2 (2 records required)

PIR Start of Device #1

STR from scan test #1

STR(s) From scan test #2 (2 records required)

PRR End of Device #1

PIR Start of Device #2

STR from scan test #1

STR from scan test #2

PRR End of Device #2

STDF V4 – 2007 Specification 65

(Note 1) Each PMR record defines a single signal’s attributes and subsequent
records will refer to these records by their ‘PMR Index”. Downstream
diagnostic tools will often need to reference the signal name used in the
pattern source files (e.g. WGL or STIL). The NMR record is required in
those cases where, for whatever reason, the PMR is not able to
accommodate the ATPG signal name. The NMR will list those pins that
may be referenced by the STR records (generally the “Scan out” pins)
and provide the required ATPG signal name.

The Version Update Record (VUR)
VUR record is enables downstream tools to quickly identify that this SDTF file
potentially contains Scan Test Failure information. It is a required record for the V4-
2007 specification.

VUR
 UPD_NAM = “V4-2007”

Name Map Record (NMR)
If we assume that the PMR records (Pin Map Record) were unable to use the signals
names specified in the ATPG pattern file (e.g. WGL or STIL) in their LOG_NAM
fields, then a NMR record needs to be created. In this example the NMR record
needs as a minimum to list all of the scan-out pins that will be subsequently
referenced in the STR (Scan Test records), e.g. if we have 32 scan out pins then
create the 1st record. Since only one NMR is required in this scenario to list all of the
signal indexes and name, REC_TOT is set to 1. REC_INDX specifies which NMR
record in the sequence of NMR records the present record resides in. (e.g. “Record
m of n”)

NMR
 REC_INDX = 1
 REC_TOT = 1
 TOTM_CNT = 32
 LOCM_CNT = 32
 PMR_INDX = { 34, 17; 83; 22; . . . 99} // 32 Scan out PMR
indexes
 ATPG_NAM = {“SO1”, “SO2”, . . . “SO32” } // ATPG signal names

Note: If the corresponding PMR record for any of these pins listed in the NMR
record used the ATPG signal in it LOG_NAM field then listing it here
again is optional.

STDF V4 – 2007 Specification 66

Pattern Sequence Record (PSR)
One or more PSR records are required to convey the information to downstream
tools about the files created by ATPG tools that were used to construct any specific
scan test. In this example we have defined that test #1 and test #2 used a different
set of or sequence of patterns file, thus a unique PSR record must be created for
each test. In this example PSR #1 will be assumed to be small enough to fit in a
single record, but we will spread out PSR#2 across two records for the sake of
understanding the use of the REC_INDX and REC_TOT fields. PSR record #1
will be created with the minimum amount of information required, and PSR record
#2 will be filled out with all of the optional fields specified.

PSR #1
 REC_INDX = 1
 REC_TOT = 1
 PSR_INDX = 1
 OPT_FLAG = 7 // The 3 optional arrays are not included
 TOTP_CNT = 2 // Test #1 is comprised from 2 ATPG files
 LOCP_CNT = 2 // Both ATPG files are defined in this record
 PAT_BGN = {10, 4011 } // See note
 PAT_END = {4010, 7010} // See note
 PAT_FILE = {“File1.std”, “File2.std” }

File Starting Cycle Ending Cycle
Initial Cycles 1 9

File1 10 4,010
File2 4,011 7,010

STDF V4 – 2007 Specification 67

The 2nd PSR record (for test # 2) is depicted below in two concatenated records.
Note that the optional field arrays FILE_UID, ATPG_DSC, and SRC_ID were
added.

PSR #2A
 REC_INDX = 1 // Record 1 of 2
 REC_TOT = 2
 PSR_INDX = 2
 OPT_FLAG = 0 // All 3 optional arrays are included
 TOTP_CNT = 5 // Test #2 is comprised from 5 ATPG files
 LOCP_CNT = 3 //First 3 ATPG files are defined in this record
 PAT_BGN = {5, 2006, 6006}
 PAT_END = {2005, 6005, 8505 } // Cycle # pattern file ends on
 PAT_FILE = {“File3.std”, “File4.std” , “File5.std” }
 FILE_UID = { “15467289”, “54223491”, “89923414” }
 ATPG_DSC = { “TetraMax V4.0”, “TetraMax V4.0”, “TetraM…” }
 SRC_ID = { “PatternExec01”, “PatternExec01”, “PatternExec01” }

PSR #2B
 REC_INDX = 2 // Record 2 of 2
 REC_TOT = 2
 PSR_INDX = 2
 OPT_FLAG = 0 // All 3 optional arrays are included
 TOTP_CNT = 5 // Test #3 is comprised from 5 ATPG files
 LOCP_CNT = 2 // Last 2 ATPG files are defined in this record
 PAT_BGN = {8505, 12525}
 PAT_END = {12505, 13405}
 PAT_FILE = {“File6.std”, “File7.std” }
 FILE_UID = { “96634527”, “94336752” }
 ATPG_DSC = { “TetraMax V4.0”, “TetraMax V4.0” }
 SRC_ID = { “PatternExec01”, “PatternExec01” }

The following table depicts the resultant tester cycle range that each pattern file
resides in based on the information supplies in the PSR #2A & 2B.

File Starting Cycle Ending Cycle

Initial Cycles 1 4
File3 5 2,005
File4 2,006 6,005
File5 6,006 8,505
File6 8,506 12,505
File7 12,526 13,405

STDF V4 – 2007 Specification 68

Scan Test Record (STR)
Each failing test execution can create a STR record to contain some or all of the failing cycles
detected in the test. In additional any desired prevalent test conditions associated with this test can
be added. The amount of information logged in an STR record can be at a minimal a set of two
data arrays (failing cycle # and failing pin #), or be expanded to include such additional data as
captured data state, expected data state, as well as user defined data. The example below depicts a
minimum data set configuration while expanded data sets will be described later in this document.

STR (#1)
REC_INDX = 1
REC_TOT = 1
TEST_NUM = 1
HEAD_NUM = 1
SITE_NUM = 1
PSR_REF = 1 // Uses the pattern files defined in PSR #1
TEST_FLG = “”
TEST_TXT = “Scan Test #1”
PROG_TXT = “”
RSLT_TXT = “Test Failed”
Z_VAL =4 // All pattern “Z” states are mapped to “X” states
FM_FLG = 2 // All fails logged, no pins masked (no FAL_MAP or MASK_MAP)
CYC_CNT =7010 //Total # of cycles in test
TOTF_CNT = 55 // 55 failures detected in this test
TOTL_CNT = 55 // All 55 failures are being logged
CYC_BASE = 0 // Add 0 to all values in the CYCL_OFST array
DATA_FLG = 252 // Use the CYCL_OFST & PMR_INDX arrays
COND_CNT = 2 // Two test conditions are listed in COND_NAM/COND_VAL
LOCL_CNT = 55 // All 55 failures are contained in this record
LIM_CNT = 0 // No fail limit specifications apply
DATA_BIT = 0 // n.a. (no EXP_DATA, CAP_DATA, & NEW_DATA arrays)
DATA_CHR = 0 // n.a. (no EXP_DATA, CAP_DATA, & NEW_DATA arrays)
DATA_CNT = 0 // n.a. (no EXP_DATA, CAP_DATA, & NEW_DATA arrays)
USR1_LEN = 0 // USR1 field is not present
USR2_LEN = 0 // USR2 field is not present
USR3_LEN = 0 // USR3 field is not present
TXT_LEN = 0 // Not logging USER_TXT array
COND_NAM = { “VCC1”, “VCC2” }
COND_VAL = { “1.3V”, “3.2V” }
CYCL_OFST = { 233, 456, . . . } // array of 55 failing Cycle #’s
PMR_INDX = { 22, 83, 22, … } // array of 55 failing pin #’s

STDF V4 – 2007 Specification 69

Below is the STR record created for the 2nd test. For sake of explanation the record is split into
two records (STR 2A & STR 2B) . Note the treatment of certain fields in the 2nd STR record that
are “redundant” with those in the 1st record. The general rule is that for fields that don’t support
multiple values for a single test execution, only the values in the 1st record are applicable. Test #2
also adds the EXP_DATA (“expected data”) array to the fail log information.

STR (#2A)
REC_INDX = 1 // Record 1 of 2
REC_TOT = 2 // Two record constitutes the STR data set
TEST_NUM = 2
HEAD_NUM = 1
SITE_NUM = 1
PSR_REF =2 // Uses the pattern files defined in PSR #2
TEST_FLG = “”
TEST_TXT = “Scan Test #2”
PROG_TXT = “”
RSLT_TXT = “Test Failed”
Z_VAL = “L”
FM_FLG = 5 // Both MASK_Map and FAL_MAP fields are present
MASK_MAP = {70, 0, 0 , 32, 0, 0, 0, 0, 0, 0, 0}(1) // 70 pins, PMR # 13 is masked
FAL_MAP = {70, 0, 4 , 32, 0, 0, 0, 0, 0, 0, 0}(1) // 70 pins, PMR # 3 has unlogged fails
CYC_CNT =13405 // Total cycles in the test
TOTF_CNT = 325 // 325 failures detected in this test
TOTL_CNT = 325 // All 325 failures are being logged
CYCLE_BASE = 0
DATA_FLG =236 // Use CYCL_OFST, PMR_INDX, and EXP_DATA arrays
COND_CNT = 2 // Two test conditions are listed in COND_NAM/COND_VAL
LOCL_CNT = 200 // 1st 200 failures are contained in this record
LIM_CNT = 0 // No fail limit specifications apply
DATA_BIT =1 // (1 bit per fail/8 fails per byte) contained in EXP_DATA array
DATA_CHR = “LH” // EXP_DATA Bit(n) = 0 : ”L” failure, = 1: “H” failure
DATA_CNT = 25 // 25 bytes (200 fails) contained in EXP_DATA array
USR1_LEN = 0 // USR1 field is not present
USR2_LEN = 0 // USR2 field is not present
USR3_LEN = 0 // USR3 field is not present
TXT_LEN = 0 // Not logging USER_TXT array
COND_NAM = { “VCC1”, “VCC2” }
COND_VAL = { “1.1V”, “2.8V” }
CYCL_OFST = {1321, . . ., 8013 } // 200 failing Cycle #’s
PMR_INDX = { 99, 99, 17, … } // 200 failing pin #’s
EXP_DATA = { 103, 87, 101, … }(1) // 200 failing data states (in 25 bytes)

STR (#2B)
REC_INDX = 2 // Record 2 of 2
REC_TOT = 2 // Two record constitutes the STR data set
TEST_NUM = 0 // Ignored, inherited from STR 2A
HEAD_NUM = 0 // Ignored, inherited from STR 2A
SITE_NUM = 0 // Ignored, inherited from STR 2A

STDF V4 – 2007 Specification 70

PSR_REF = 0 // Ignored, inherited from STR 2A
TEST_FLG = 0 // Ignored, inherited from STR 2A
TEST_TXT = 0 // Ignored, inherited from STR 2A
PROG_TXT = 0 // Ignored, inherited from STR 2A
RSLT_TXT = 0 // Ignored, inherited from STR 2A
Z_VAL = 0 // Ignored, inherited from STR 2A
FM_FLG = 0 // Ignored, use MASK_MAP & FAL_MAP data from STR #2A
CYC_CNT =0 // Ignored, inherited from STR 2A
TOTF_CNT = 0 // Ignored, inherited from STR 2A
TOTL_CNT = 0 // Ignored, inherited from STR 2A
CYCLE_BASE = 0 // Ignored, inherited from STR 2A
DATA_FLG = 236 // Use CYCL_OFST, PMR_INDX, and EXP_DATA arrays
COND_CNT = 1 // One test condition are listed in COND_NAM/COND_VAL
LOCL_CNT = 200 // 1st 200 failures are contained in this record
LIM_CNT = 0 // Ignored, inherited from STR 2A
DATA_BIT =1 // (1 bit per fail/8 fails per byte) contained in EXP_DATA array
DATA_CHR = “LH” // EXP_DATA Bit(n) = 0 : ”L” failure, = 1: “H” failure
DATA_CNT = 16 // 16 bytes (125 fails) contained in EXP_DATA array
USR1_LEN = 0 // USR1 field is not present
USR2_LEN = 0 // USR2 field is not present
USR3_LEN = 0 // USR3 field is not present
TXT_LEN = 0 // Not logging USER_TXT array
COND_NAM = { “CAP_FREQ” }
COND_VAL = { “765MHz” }
CYCL_OFST = { 8025, 754, . . . } // 125 failing Cycle #’s
PMR_INDX = { 17, 23, 17 … // 125 failing pin #’s
EXP_DATA = { 103, 87, 101, … }(1) // 125 failing data states (in 16 bytes)

Note (1): a list of bytes

STDF V4 – 2007 Specification 71

Additional Data Arrays Available in the STR Record
In addition to the arrays used in the previous example, there are other optional arrays that can be
for logging either additional failure or other test information

As shown in the example for Test #2, the optional EXP_DATA array was added to log the
expected data state for each failure. In this example only “L” or ‘H” data state failures were
possible, so one bit per failure was defined for this array (DATA_BIT field) which compressed
the data into 8 failiyre per byte. The CAP_DATA array is intended for logging “captured” data
its use is identical to that defined for the EXP_DATA. Generally the usage of CAP_DATA array
is in a test specifically used for the capture of actual devices data independent of expect data, e.g. a
“Scan Dump”

The NEW_DATA array is provided for the purpose of logging changes made to a pattern within
the ATE test program that results in a difference from the original ATPG pattern. Its use is
identical to that defined for the EXP_DATA and CAP_DATA. It may or not be used in
conjunction with the EXP_DATA array which would contain the original pattern data. Generally
the usage of this field is in a test specifically used for the one time recording of the pattern
changes made to a specific test.

Finally, the USER_TXT array provides the facility to log a unique fixed string for each logged
failure (the string length is set in the TEXT_LEN field).

 In summary, the typical array combinations in an STR record are:

1) CYCL_OFST + PMR_INDX

2) CYCL_OFST + PMR_INDX + EXP_DATA

3) CYCL_OFST + PMR_INDX + CAP_DATA

4) CYCL_OFST + PMR_INDX + NEW_DATA

5) CYCL_OFST + PMR_INDX + EXP_DATA +NEW_DATA

STDF V4 – 2007 Specification 72

Logging Changes Made to a Pattern
One of the capabilities added is the ability to log any modifications made to a test pattern that
deviate from the pattern data that was in the original ATPG files. First a STR record is created
just for logging the changes as per the following example: (LH1X0HHLHH1X0 is being
changed to XL0L1XLXXX0L1 on the specified cycles/pins)

STR (Pattern Change)
REC_INDX = 1
REC_TOT = 1
- - -
PSR_REF = 1 // Uses the pattern files defined in PSR #1
- - - - -
LOG_TYP = “Pattern_Change” // Indicates record purpose to downstream tool
- - - - -
TOTL_CNT =13 // 13 pattern changes are being logged
CYC_BASE = 0 // Add 0 to all values in the CYCL_OFST array
DATA_FLG = 204 // Use CYCL_OFST , PMR_INDX, EXP_DATA, & NEW_DATA
- - - - -
LOCL_CNT = 13 // All 5 pattern changes are contained in this record
- - - - -
DATA_BIT = 4 // 4 bits per cycle used
DATA_CHR = “LHXZ01xxxxxxxxxx” // the data to pattern map for 4 bits
DATA_CNT = 7 // 7 bytes are required for 13 pattern changes
- - -
CYCL_OFST = { 233, 456, . . . } // Array of the 13 cycles being changed
PMR_INDX = { 22, 83, 22, … } // Array of the 13 pins being changed
EXP_DATA = { 16, 37, 20, 1, 17, 37, 4 } // Array of original pattern data
NEW_DATA = { 33, 66, 81, 0, 33, 66, 80 } // Array of new pattern data

Subsequently whan an STR is being logged that uses the changes described above, the
FMU_FLG bit 4 should be set to a 1 to indicate the test is being performed with modifications
made to the original pattern.

STDF V4 – 2007 Specification 73

Logging Pattern/Chain/Bit Data in an STR Record
The previous conventions were based on the tester capturing the cycle and pin # of a failure and
logging the data in that format. The downstream tool would then, based on information provided
in the PSR records, extract the Pattern/Chain/Bit information on which the diagnosis is
performed. The facility for the logging of Pattern/Chain/Bit data directly in the STR record is
provided by the PAT_NUM and BIT_POS arrays. The PAT_NUM array would contain a list
of pattern numbers (starting at 0 or 1) and the BIT_POS array would contain the bit position with
the chain (Bit position “1” is the 1st location read out of a scan chain).

When the test contains multiple pattern files, the proposed convention is to start the pattern
numbering over at “1” on each pattern. To indicate when a new file starts the proposed
convention is to indicate that by inserting a “file change marker”. This could be done by inserting
an entry in the PAT_NUM array of 65535 and a corresponding file number in a new BIT_POS
entry.

This format can be used with the PMR_INDX array to indicate what pin # the failure was
observed on. Instead of or in addition to the PMR_INDX array, the CHN_NUM (chain
number) can be used as a direct reference to the chain number.

In addition, the USER_TEXT field could potentially be used to log the failing flipflop names.
However, a more effective and compact alternative would probably be to use the CNR records
for this purpose.

STDF V4 – 2007 Specification 74

Using the User Defined Data Arrays in an STR Record
The user may add up to three optional generic data arrays to an STR file logging user specific data.
Each of the three arrays can be specified to be a 1, 2, or 4 byte data type. If present, the array
sizes will be specified by the LOCL_CNT field (this is the same field that specifies the
CYCL_OFST, PMR_INDX, and CHN_NUM array sizes). Like other data arrays, these arrays
may be concatenated across contiguous STR records. The presence/size of these arrays is
specified by the USR1_LEN, USR2_LEN, and USR3_LEN fields respectively.

Logging Failures by Scan Cell Name in an STR Record
There are two provisions provided for logging explicit scan cell failures by name. The simplest
(but most memory intensive) is to insert a string entry into the USER_TXT array for each failure.
Each string entry must be a fixed length string which is specified in the TXT_LEN field. Note
that the usage of the USER_TXT field is not exclusively for scan cells name and can be used for
other user specific applications.

A more efficient method of logging explicit scan cells failures is to create a ScanCell Name
Record (CNR) for each scan cell failure observed (the same CNR record can be referenced each
time it fails) The structure of a CNR record is:

CNR
 CHN_NUM = Chain number
BIT_POS = Scan cell position in chain
CELL_NAM = Scan cell Name

Notes:

CHN_NUM would be referenced by the CHN_NO array in an STR record
BIT_POS would be referenced by the BIT_POS array in an STR record

STDF V4 – 2007 Specification 75

The FMU_FLG, MASK_MAP, and FAL_MAP Fields
The STR record provides three fields (two of which are optional) that provide
additional information to downstream diagnostic tools about the failure attributes of
specific signal pins.

The MASK_MAP field will specify which signals have been masked off in this
specific test

The FAL_MAP field will specify which signals have additional failures that were
detected beyond what was logged in the data arrays.

These presences of the MASK_MAP and FAL_MAP arrays are optional
and their attributes are declared in the FMU_FLG field. (Note: that bit 4 of
the FMU_FLG field is used to indicate that patterns have been modified)

The set of available field attributes for the MASK_MAP field are:

• No pins are masked and the MASK_MAP field is not present in this record

• Some pins are masked and the MASK_MAP field is present in this record

• Some pins are masked and the masked pins were specified in the
MASK_MAP field contained in a previous STR record used for this same test
suite. The field is not replicated in this STR record again (the information is
“inherited” form the last STR applicable to this test)

The set of available field attributes for the FAL_MAP field are:

• No information on any potential additional failures after the last logged failure
is available and the FAL_MAP field is not present in this record

• All failures were logged thus the FAL_MAP field is not present in this record

• They were some pins that have failures beyond what was logged and those
pins are specified in the FAL_MAP field included in this record.

STDF V4 – 2007 Specification 76

The LIM_CNT, LIM_INDX, and LIM_SPEC Fields
The STR record provides three fields (two of which are optional) that provide
additional information to downstream diagnostic tools about the failure logging
characters of specific signal pins.

The LIM_INDX array contains a list of pins (via their PMR indexes) that have
unique maximum failure limits that were imposed by the tester for this specific test.

 The LIM_SPEC array contains a list of the maximum failure limits imposed by
the tester for this test. Each entry is the maximum failure limit imposed on the
corresponding pin in the LIM_INDX array. If the If the 1st entry in LIM_INDX
is= 0 (an otherwise invalid PMR index) then this indicates that the first specification
listed in the LIM_SPEC array is the “default limit” and will apply to all pins not
otherwise explicitly listed in the PMR_INDX array.

The LIM_CNT field specifies the number of entries in the LIM_INDX and
LIM_SPEC arrays.

Example: Assume that pin #17 has a max failure limit of 1000, pin #99 has a
maximum failure limit of 1500, and all other pins have a maximum failure limit of
3000, the field values would then be:

LIM_CNT = 3

LIM_INDX = { 0, 17, 99 }

LIM_SPEC = { 3000, 1000, 1500 }

STDF V4 – 2007 Specification 77

Logging Scan Structure Information
The SSR and SCR records provide the ability to include scan chain structure
information in an STDF file. Normally this information would be extracted from the
ScanStructures block of a STIL file. These records are optionally and are referenced
or required by any other record type in STDF file. These records will tend to be
very large and should be included only if required by a downstream diagnosis tool.

The SSR (Scan Structure Record) contains the top level information of a scan
structure and includes the following fields:

SSR_NAM = the name of the ScanStructure block

CHN_CNT = the number of chains in the block

CHN_LIST = the list of SCR (Scan Chain record) record indexes

A SCR (Scan Chain record) must be created for each chain in the structure.
Generally, multiple SCR records will be required to list all of the scan cell names that
are present in one chain. One option to the user is to exclude the scan cell name list
(by setting FLOCS_CNT = 0) to achieve smaller files but still provide the other
chain information .

 SCR_INDX = Scan chain index (as referenced by the CHN_LIST array)
 CHN_NAM = Chain name
 FTOTS_CNT = Chain length (# of scan cells in chain)
 FLOCS_CNT = # of scan cells in chain listed in this record
 SIN_PIN = Scan-in pin (PMR index)
 SOUT_PIN = Scan-out pin (PMR index)
 MSTR_CNT = # of master clocks used in this scan chain
 FSLAV_CNT = # of slave clocks used in this scan chain
 M_CLKS = List of master Clocks (PMR Indexes)
S_CLKS = List of slave clocks (PMR Indexes)
INVRT_FlG = Chain Inversion state (0 or)

 CELL_LST = List of scan cell names

Note: The CELL_LST list is a “kxS*n” data type, which is a new data type added in
STDF 4-2007. The “S*n” type provides allows strings longer then the 255 character
limit imposed by the “C*n” data type.

STDF V4 – 2007 Specification 78

Figure 9: Sample STDF V4-2007 File Structure

ATR

VUR

MIR

FAR

PMR

NMR

PSR

PIR

PRR

STR

SDR

STR

WIR

WRR

Per test log fragment/ per test

Per test log fragment/per test

Per pin/per part type

Per test/per part type

Per part

CNR
Per Required Flopname

SSR
Per Scan Structure

SCR
Per Scan Chain/ Scan Structure

TSR

Required
Record

Optional
Record

Record is
repeated as
indicated by
the caption

Legend

