
RI Synapse:
Automated Test Plan Optimization

Philosophy Graphical
Programming

Optimization Test
Management

Workflow
Structure

Making Measurements Fast
 In production test, the three main objectives are: measurement accuracy,
measurement consistency, and measurement speed. These are the criteria by which
systems benchmark their performance, and speed is a crucial factor in the time to market
and cost per part equation. The process of making measurements fast however, cannot be
an afterthought in ATE design; it has to be integrated into the core of the test system to be
effective. To address this need, RI developed Synapse: a sophisticated and powerful
automated test plan optimizer. Combining Cassini’s state-based software infrastructure and
intelligent test code analysis, Synapse is able to fine-tune a user’s test plan to execute faster
and more efficiently in the hardware.

The Coding Conundrum
 The difficulty of speeding up tests for a
production environment is a two-fold problem:
• The user has to write efficient software code that

reduces functions and tasks to their simplest form
• Compiled code has to be organized to execute

efficiently for a given hardware setup on the tester
Careful programming can reduce wasteful and unnecessary processes, but this can become
tedious and in some cases add significantly to the code development cycle. In addition,
high-level program functions and calls reduce the amount of control a user can exert over
the underlying processes and execution. The second and perhaps more difficult of the two
is how to optimize the code for the hardware. For the most part, this undertaking lies outside
the control of the user because it is difficult or impossible to manipulate compiled hardware
code in a meaningful way. Secondly, the hardware setup can change from tester to tester,
meaning what is optimal for one setup will not be optimal for another.

 With Cassini this process is eliminated altogether by letting the user and the test
system do what they do best. The user designs the measurements in a test plan using the
software’s hardware-aware function and command sets based on the attached instruments.
Since the software is aware of the attached hardware, and knows how test code will be
executed through state changes, the system has all the components it needs to begin
optimizing. Synapse provides the logic engine for determining how to best organize the
measurements to run fastest on the current hardware setup.
__
Roos Instruments: Fast Test by Design

Which Method Makes Faster Tests?

Code
Organization
Determines
Hardware

Layout

Hardware
Layout

Determines
Code

Organization

SOFTWARE HARDWARE

C 1-1

Conventional Test Programming & Compile

RI Test Plan & Compile

__
Roos Instruments: Fast Test by Design

Test Plan Development

In a traditional test plan environment,
the user writes commands and builds
measurement functions using a text-
based programming language. At this
point, the algorithms and commands
have no connection to how they will be
executed in the ATE hardware.

Program Compile

Code compilation can be thought of as a
two step process:
• The user’s source code is translated

into targeted-hardware code (colored
blocks) by linking the software
commands to their respective
hardware resources.

• The targeted code is assembled to
execute in the hardware exactly as it
was organized by the user in
software.

Executable Code

What comes out of this process is
packaged code that can be used to drive
the hardware. It has been verified
against the capability of the system, and
guaranteed to reflect the command and
function structure the user has
designed.

Executable Code

Using knowledge of the hardware and
the user’s program, Synapse has
restructured the measurement
organization to execute more efficiently
on the tester. The result is packaged
code that has been verified against the
capability of the system, and guaranteed
to reflect the command and function
structure the user has designed.

Optimization

Synapse uses the hardware state
information of the test objects to
analyze the program execution behavior:
• Identify code that uses shared

hardware resources (similar color), or
redundant resource calls to combine
or run tasks concurrently in the
hardware.

• Synapse determines the time costs of
hardware state switching, and
optimizes the order measurements
are executed (grouping colored
blocks) to save time.

Test Plan Development & Compile

The RI test plans use test objects as the
code bui lding blocks, connected
together in a graphical programming
environment to represent functions and
measurements. The test objects link to
the resource capability of connected
test instrument modules (TIMs).
Connections made between blocks are
compiled into sequences of state
changes the hardware will execute to
reflect the user’s program.

C 1-2

Test Execution
 When it comes time to execute the
assembled code, it’s easy to see the
benefits of optimization. By organizing
the order of measurements relative to the
hardware, the system can execute the
tests much more efficiently. The state
changes between hardware switching
have been greatly reduced, permitting
much more effective use of the tester’s
time to gather and process data.
Ultimately, automated optimization lets
the tester solve the problem of speeding
up tests and enables the test developer
to focus on the specifics of accurately
validating the part.

Differential Compiling
 Often times a developer has limited access to the tester on a production floor,
meaning less time to experiment with different test code. An added benefit of programming
and optimizing state-aware coding blocks is the ability to exert more control over the compile
stage. If just a section of the user’s code has been altered, the system only needs to
compile what has changed to incorporate the new information. This incremental compile
ability gives the user another advantage in the test development cycle by accelerating the
design iteration process.

Execution Order Control
 Synapse was designed to aid the programmer, and make their job easier by finding
the fastest order to execute tests. In some cases however, test setups and measurements
need to be run on the part in a specific order. Because Synapse is integrated with the
graphical test plan software, the user can view the order code will be executed, and control
how and where optimization can be applied:
• Individual tests and measurement can be isolated from the optimizer
• Groups of sequential measurements can be excluded
• The optimizer can be completely disabled
By combining the abilities of automated test plan optimization with advanced software
execution control, the user has a sophisticated and powerful production-test development
environment in which to design.

Up Next
 The next document in the series, "Test Management," describes the multi-functional
software tool Guru. Combining test file and resource management, software version and
distribution control, an automated backup system, and a networked communication
backbone to tie it all together, Guru is the ultimate production test management client.
__
Roos Instruments: Fast Test by Design C 1-3

