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Introduction

 

(This introduction is not part of IEEE Std 1450-1999, IEEE Standard Test Interface Language (STIL) for Digital Test
Vector Data.)

 

Standard Test Interface Language (STIL) was initially developed by an ad-hoc consortium of test equipment
vendors, computer-aided engineering (CAE) and computer-aided design (CAD) vendors, and integrated cir-
cuit (IC) manufacturers, to address the lack of a common solution for transferring digital test data from the
generation environment to the test equipment.

The need for a common interchange format for large volumes of digital test data was identified as an overrid-
ing priority for the work; as such, the scope of the work was constrained to those aspects of the test environ-
ment that contribute significantly to the volume issue, or are necessary to support the comprehension of that
data. Binary representations of data were a key consideration in these efforts, resulting in a proposal to incor-
porate the compression of files as part of this standard.

Limiting the scope of any standards project is a difficult thing to do, especially for a room full of engineers.
However, issues that did not impact the scope as identified were dropped from consideration in this version
of the standard. Subclause 1.1 covers, specifically, the capabilities that are not intended to be part of this first
standard.

Early work in this consortium consisted of identifying the requirements necessary to address this problem
and reviewing existing options and languages in the industry. All options proposed fell short of addressing
the requirements, and the consortium started to define a new language. This work was executed with heavy
leverage from some existing languages and environments, and STIL owes much to the groundwork estab-
lished by these other languages.
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IEEE Standard Test Interface 
Language (STIL) for Digital Test 
Vector Data

 

1. Overview

 

Standard Test Interface Language (STIL) is a standard language that provides an interface between digital
test generation tools and test equipment. STIL may be directly generated as an output language of a test gen-
eration tool, or it may be used as an intermediate format for subsequent processing. Figure 1 shows STIL
usage in a “pipe” format. This is meant solely as a visual analogy to emphasize the high-volume/high-
throughput requirements. It is not meant to represent physical structures or implementation requirements.

STIL is a representation of information needed to define digital test operations in manufacturing tests. STIL
is not intended to define how the tester implements that information. While the purpose of STIL is to pass
test data into the test environment, the overall STIL language is inherently more flexible than any particular
tester. Constructs may be used in a STIL file that exceed the capability of a particular tester. In some circum-
stances, a translator for a particular type of test equipment may be capable of restructuring the data to sup-
port that capability on the tester; in other circumstances, separate tools may operate on that data to provide
that restructuring. In all circumstances, it is desirable to provide the capability to check the data against the
constraints of a tester. This capability is referred to as Tester Rules Checking and is the domain of tools that
operate on STIL data. As such, Tester Rules Checking operations are outside the scope of this standard.

Figure 2 shows how STIL fits into the data flow between computer-aided engineering (CAE)/simulation and
the test environment. In this figure, STIL is shown as both the input and output of “STIL Manipulation
Tools.” STIL represents patterns as a series of cyclized waveforms that are executed sequentially. The wave-
form representation can be as simple as a “print-on-change” set of events, or a complex set of parameterized
events. Hence, tools may be required to manipulate the data according to the requirements of a particular
class of device, simulation, or tester. The output of that manipulation is still represented in STIL.

Another issue presented in Figure 2 is the need for data from the tester to be transmitted back to the
CAE/simulation environment for the purpose of correlating simulation data to tester data. Although this is
recognized as an important aspect of testing digital devices, it does not represent the data volume that the
patterns themselves do, and is not specifically supported in this version of the standard.
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1.1 Scope

 

This standard defines a test description language that:

a) Facilitates the transfer of large volumes of digital test vector data from CAE environments to auto-
mated test equipment (ATE) environments;

b) Specifies pattern, format, and timing information sufficient to define the application of digital test
vectors to a device under test (DUT);

c) Supports the volume of test vector data generated from structured tests such as scan/automatic test
pattern generation (ATPG), integral test techniques such as built-in self test (BIST), and functional
test specifications for IC designs and their assemblies, in a format optimized for application in ATE
environments.

In setting the scope for any standard, some issues are defined to not be pertinent to the initial project. The
following is a partial list of issues that were dropped from the scope of this initial project:

— Levels: A key aspect of a digital test program is the ability to establish voltage and current parame-
ters (levels) for signals under test. Level handling is not explicitly defined in the current standard, as
this information is both compact (not presenting a transportation issue) and commonly established
independently of digital test data, requiring different support mechanisms outside the current scope
of this standard. Termination values may affect levels.

— Diagnostic/fault-tracing information: The goal of this standard is to optimally present data that needs
to be moved onto ATE. While diagnostic data, fault identification data, and macro/design element
correspondence data can fall into this category (and is often fairly large), this standard is also
focused on integrated circuit and assemblies test, and most debug/failure analysis occurs separately
from the ATE for these structures. Note that return of failure information (for off-ATE analysis) is
also not part of the standard as currently defined.

— Datalogging mechanisms, formatting, and control usually are not defined as part of this current
standard.

— Parametric tests are not defined as an integral part of this standard, except for optional pattern labels
that identify potential locations for parametric tests, such as I

 

DDQ

 

 tests or alternating current (AC)
timing tests.

— Program flow: Test sequencing and ordering are not defined as part of the current standard except as
necessary to define collections of digital patterns meant to execute as a unit.

— Binning constructs are not part of the current standard.

— Analog or mixed-signal test: While this is an area of concern for many participants, at this point
transfer of analog test data does not contribute to the same transportation issue seen with digital data.

— Algorithmic pattern constructs (such as sequences commonly used for memory test) are not currently
defined as part of the standard.

— Parallel test/multisite test constructs are not an integral part of the current environment.

— User input and user control/options are not part of the current standard.

— Characterization tools, such as shmoo plots, are not defined as part of the current standard.
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1.2 Purpose

 

This standard addresses a need in the integrated circuit (IC)

 

1

 

 test industry to define a standard mechanism for
transferring the large volumes of digital test data from the generation environment through to test. The
environment today contains unique output formats of existing CAE tools, individual test environments of IC
manufacturers, and proprietary IC ATE input interfaces. As each of these three arenas solves individual prob-
lems, together they have created a morass of interfaces, translators, and software environments that provide
no opportunity to leverage common goals and result in much wasted efforts re-engineering solutions. As
device density increases, the magnitude of test data threatens to shift the test bottleneck from the generation
process to the processes necessary solely to maintain and transport this data. These two factors threaten to
eliminate any productive work performed in this area unless a viable standard is defined.

With a common standard for CAE and IC ATE environments, the generation, movement, and processing of
this test data is greatly facilitated. This standard also allows for immediate access to test equipment support-
ing this standard, which benefits both ATE and IC vendors reviewing this equipment.

This standard also serves as a catalyst for the development of a set of standard third party interface tools to
both test and design aspects of IC device generation.

 

2. References

 

This standard shall be used in conjunction with the following standards. If the following publications are
superseded by an approved revision, the revision shall apply.

IEEE Std 100-1996, The IEEE Standard Dictionary of Electrical and Electronics Terms, Sixth Edition.

 

2

 

IEEE Std 260.1-1993, American National Standard Letter Symbols for Units of Measurement (SI Units,
Customary Inch-Pound Units, and Certain Other Units).

ISO 2955:1983, Information processing—Representation of SI and other units in systems with limited char-
acter sets.

 

3

 

ISO/IEC 9899:1990, Programming languages—C.
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3. Definitions, acronyms, and abbreviations

 

3.1 Definitions

 

For the purposes of this standard, the following terms and definitions apply. Additional terminology specific
to this standard is found in Annex A. IEEE Std 100-1996, 

 

The IEEE Standard Dictionary of Electrical and
Electronics Terms, Sixth Edition

 

, should be referenced for terms not defined in this document.

 

1

 

The use of this term in this standard is meant only as a point of reference and not to indicate an explicit limitation or restriction of
focus.

 

2

 

IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://www.standards.ieee.org/).

 

3

 

ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genève 20, Switzer-
land/Suisse (http://www.iso.ch/). ISO publications are also available in the United States from the Sales Department, American
National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA (http://www.ansi.org/).

 

4

 

IEC publications are available from the Sales Department of the International Electrotechnical Commission, Case Postale 131, 3, rue
de Varembé, CH-1211, Genève 20, Switzerland/Suisse (http://www.iec.ch/). IEC publications are also available in the United States
from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.
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3.1.1 automatic test pattern generator (ATPG): 

 

Any tool that generates test information for a device
based on structural analysis of the device.

 

3.1.2 breakpoint

 

: A position within a pattern set where the pattern may be segmented into multiple indepen-
dent bursts while still achieving predictable behavior of the device.

 

3.1.3 built-in self-test (BIST): 

 

A test paradigm that incorporates circuitry in the device for executing and
resolving test information about the device. 

 

3.1.4 burst

 

: Tester execution of a pattern or set of patterns. Generally controlled by “start” and “stop” defini-
tions.

 

3.1.5 computer-aided engineering (CAE): 

 

A

 

 

 

computer-based set of tools to assist in the design and devel-
opment of integrated circuits.

 

3.1.6 cyclize:

 

 To drive a tester, data must be provided in uniform, consistent, repeatable collections. These
collections are termed “cycles” or “tester cycles.” The process of constructing these collections, generally
from simulation environments, is called “cyclizing.”

 

3.1.7 device: 

 

A reference to an integrated circuit or other design structure.

 

3.1.8 device under test (DUT):

 

 The device to be placed in a test fixture and tested.

 

3.1.9 float-state: 

 

A logic value that indicates the lack of an active drive condition, generally used in an envi-
ronment with multiple drivers connected to a single signal, and commonly referenced in digital simulation as
a “Z” state.

 

3.1.10 functional vector:

 

 A pattern generated to exercise a device’s functional behavior. Generally defined
to run the device at system speeds to verify system behavior of a design. 

 

Contrast with

 

: 

 

structural vectors

 

.

 

3.1.11 I

 

DDQ

 

:

 

 Current measurement taken at the ground rail during quiescent operation.

 

3.1.12 incremental vector:

 

 A representation of test vectors containing only the changing signals and new
signal values in each vector. Parallel vectors can be generated from incremental vectors by maintaining test-
specified state information for signals that did not change.

 

3.1.13 metatype: 

 

A collection of defined linguistic entities that share some common features. 

 

Note:

 

 In this
standard, all defined metatypes represent collections of entities which may be used interchangeably in the
language.

 

3.1.14 newline:

 

 The character or characters necessary to generate the start of the next line of ASCII text.
May also be known as a carriage-return (CR), linefeed (LF), or a CR-LF combination.

 

3.1.15 parallel vector: 

 

A representation specifying a set of waveforms across all primary signals, to be
applied to those signals in a parallel fashion (i.e., simultaneously).

 

3.1.16 parametric test:

 

 A test that is performed to verify device behavior such as output drive current, input
leakage current, or output voltage.

 

3.1.17 pattern: 

 

One or more vectors comprising a functionality test for a specific portion of a device under
test (DUT).

 

3.1.18 primary signal: 

 

A signal at the interface between the physical device and the physical tester. Any and
all information meant for test is defined on these signals; test translators need process these signals only.
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3.1.19 pseudo signal: 

 

A signal other than that at the interface between the device and the tester. This
includes internal signals, derived signals, and any other signals that may be required by tools other than test
translators to generate tests or test constructs.

 

3.1.20 scan input signal: 

 

A primary signal which may be used to serially precondition the scan register
latches of the DUT.

 

3.1.21 scan output signal:

 

 A primary signal which may be used to serially observe the contents of the scan
register latches of the DUT.

 

3.1.22 scan test methodology:

 

 A test methodology that utilizes shift register latches to precondition and
observe modeled faults within the DUT. Scan tests typically consist of a serial preconditioning (load via scan
inputs), parallel vectors to clock/transition the DUT, and then a serial observation (unload via the scan
outputs).

 

3.1.23 scan vectors:

 

 A representation of test information containing lists of states that are to be shifted into
or out of the scan pins on the device.

 

 Note:

 

 Scan vectors imply the use of scan test methodology in the design
of the device under test.

 

3.1.24 signal: 

 

A point in the design from which a stimulus may be directly applied or a response directly
measured.

 

3.1.25 standard test interface language (STIL):

 

 A syntax for the description of device stimulus and
expected response used for stimulus development, as well as input to automated test equipment (ATE).

 

3.1.26 structural vectors: 

 

A pattern generated to exercise a device’s structural elements (e.g., scan-based
ATPG test generation). 

 

Contrast with

 

: 

 

functional vectors

 

.

 

3.1.27 termination:

 

 A constant impedance and digital logic state that a signal is held at during some or all of
a test.

 

3.1.28 tester cycle: 

 

See:

 

 

 

vector

 

.

 

3.1.29 T0 (pronounced “tee-zero”):

 

 A reference to a MASTER clock that synchronizes all events 
across all signals to a common starting point. Initiates the start of each test vector.

 

3.1.30 valid compare: 

 

A condition on output response when the precise state of the response is not impor-
tant to the test, but the fact that the output is a valid state value is pertinent.

 

3.1.31 valid input:

 

 A condition on input stimulus when the state of that stimulus will not affect the current
test. In the simulator perspective, this condition is often identified as an unknown, or X, state.

 

3.1.32 vector: 

 

Every signal’s stimuli/response to be applied/observed in the smallest integral “step” of a
device test. Contains a collection of waveforms to be applied to the primary signals. 

 

See:

 

 

 

T0

 

.

 

3.1.33 waveform:

 

 A stream of defined events containing both state and timing information.

 

3.1.34 waveshape:

 

 A stream of defined states or transitions with no associated timing.
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3.2 Acronyms and abbreviations

 

ATE

 

automated test equipment

 

ATPG

 

automatic test pattern generator

 

BIST

 

built-in self-test

 

BNF

 

Backus-Naur form

 

CAE

 

computer-aided engineering

 

DFT

 

design for test

 

DAT

 

direct access test

 

DMA

 

direct memory access

 

DUT

 

device under test

 

FSM

 

finite stste machine

 

IC

 

integrated circuit

 

I/O

 

input/output

 

LSB

 

least significant bit

 

MSB

 

most significant bit

 

TAP

 

test access port

 

TCK

 

test clock

 

TDI

 

test data in

 

TDO

 

test data out

 

TMS

 

test mode select

 

4. Structure of this standard

 

This standard is partitioned into several clauses to assist those who are just discovering the language to learn
the constructs and capabilities of STIL, and to facilitate those experienced with the language to find the par-
ticular element they need. 

Clause 5 is structured as an informative tutorial to the language, and serves to introduce STIL concepts,
starting with the basics and expanding into special purpose or more elaborate constructs. This clause elabo-
rates on what is happening (and why); however, it is not intended to be a complete presentation on each con-
struct, nor is it a normative part of the specification.

Following the tutorial are the language definition clauses. These clauses present the entire language, with all
requirements and capabilities delineated completely.

The following conventions are used in this standard.

Different fonts are used as follows:

a)

 

SMALL

 

 

 

CAP

 

 

 

TEXT

 

 is used to indicate user data;
b)

 

courier text

 

 is used to indicate code examples.

In the syntax definitions:

a)

 

SMALL

 

 

 

CAP

 

 

 

TEXT

 

 is used to indicate user data; 
b)

 

bold text 

 

is used to indicate keywords;
c)

 

italic text

 

 is used to reference metatypes;
d) ()

 

 

 

indicates optional syntax which may be used 0 or 1 time;
e) ()+ indicates syntax which may be used 1 or more times;
f) ()* indicates optional syntax which may be used 0 or more times;
g) <> indicates multiple choice arguments or syntax.
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In the syntax explanations, the verb “shall” is used to indicate mandatory requirements. The meaning of a
mandatory requirement varies for different readers of the standard:

— To developers of tools that process STIL (“readers”), “shall” denotes a requirement that the standard
imposes. The resulting implementation is required to enforce this requirement and issue an error if
the requirement is not met by the input.

— To developers of STIL files (“writers”), “shall” denotes mandatory characteristics of the language.
The resulting output must conform to these characteristics.

— To the users of STIL, “shall” denotes mandatory characteristics of the language. Users may depend
on these characteristics for interpretation of the STIL source.

The language definition clauses contain statements that use the phrase “it is an error,” and “it may be ambig-
uous.” These phrases indicate improperly-defined STIL information. The interpretation of these phrases will
differ for the different readers of this standard in the same way that “shall” differs , as identified in the
dashed list above (Clause 4).

Waveforms represented in the diagrams use symbols defined in Table 9 through Table 12. Use the informa-
tion in these tables to help understand waveform diagrams.

 

5. STIL orientation and capabilities tutorial (informative)

 

This clause presents an overview of STIL through a layered tutorial that explains the language constructs.
This clause is informative and is not a part of IEEE Std 1450-1999, Standard Test Interface Language (STIL)
for Digital Test Vector Data.

 

5.1 Hello Tester

 

Figure 3 represents a complete STIL program to exercise a subset of behavior for an octal bus transceiver
design, modeled after a TTL LS245. Details of this design are found in Annex E. This example defines the
LS245 as “unidirectional.” To simplify this example, the “A” bus signals are defined as inputs, and the “B”
bus signals are defined as outputs. Figure 3 is annotated and explanations (notes) for each of the marked sec-
tions follow the figure.

 

NOTE—Figure notes follow all of the annotated figures in this standard.
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STIL 1.0;

Signals {
    DIR In;
    OE_ In;
    A0 In; A1 In; A2 In; A3 In;
    A4 In; A5 In; A6 In; A7 In;
    B0 Out; B1 Out; B2 Out; B3 Out;
    B4 Out; B5 Out; B6 Out; B7 Out;
}

SignalGroups {
    ABUS=’A7 + A6 + A5 + A4 + A3 + A2 + A1 + A0’;
    BBUS=’B7 + B6 + B5 + B4 + B3 + B2 + B1 + B0’;
    ALL =’DIR + OE_ + ABUS + BBUS’;
}

Timing “hello tester timing” {
    WaveformTable one {
      Period ’500ns’;
       Waveforms {

DIR { 01 { ’0ns’ ForceDown/ForceUp; }}
OE_ { 01 { ’0ns’ ForceUp; ’200ns’ ForceDown/ForceUp;

  ’300ns’ ForceUp; }}
ABUS { 01 { ’10ns’ ForceDown/ForceUp; }}
BBUS { HLZ { ’0ns’ ForceOff;’0ns’ CompareUnknown;
’260ns’ CompareHighWindow/CompareLowWindow/CompareOffWindow;

  ’280ns’ CompareUnknown;}}
      }
    }           // end WaveformTable one
}               // end Timing “hello tester timing”

PatternBurst “hello tester burst” {
PatList { “hello tester pattern”; {

} // end PatternBurst "hello tester burst"

1

2

3

4

5

6

7

8

PatternExec {
   Timing “hello tester timing”;
   PatternBurst “hello tester burst”;
} //end PatternExec

Pattern “hello tester pattern” {
       W one;
       V { ALL=0000000000LLLLLLLL; }
       V { ALL=0010000000HLLLLLLL; }
       V { ALL=0001000000LHLLLLLL; }
       V { ALL=0000100000LLHLLLLL; }
       V { ALL=0000010000LLLHLLLL; }
       V { ALL=0000001000LLLLHLLL; }
       V { ALL=0000000100LLLLLHLL; }
       V { ALL=0000000010LLLLLLHL; }
       V { ALL=0000000001LLLLLLLH; }
} //end Pattern "hello tester pattern"

9

10

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.

 Figure 3—Hello Tester
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Notes for Figure 3.

 

NOTE 1—The very first statement in a STIL file is the 

 

STIL

 

 statement. This statement defines the version of the STIL
language following this statement. 

NOTE 2—The 

 

Signals

 

 block defines a name for each signal used in the test vectors and identifies the signal type, such as
In, Out, InOut, Supply, or Pseudo. Remember that in this example the bidirectional busses of the LS245 design are
defined as unidirectional and, therefore, only In and Out are used here.

NOTE 3—The SignalGroups block defines an ordered set of signals to be referenced in subsequent operations. In this
example, three groups are defined: a collection of all bits of the “A” bus, called ABUS; a collection of all bits of the “B”
bus, called BBUS; and a collection of all signals in the design called ALL. ALL has been defined using the two previous
group definitions. The operators “+” and “-” are used to define these ordered groups in objects called “pin expressions.”

NOTE 4—The Timing block defines sets of “WaveformTables.” Each WaveformTable defines the waveforms to be
applied to each signal used in a vector. After the Timing keyword is the quoted string “Hello Tester Timing.” This quoted
string becomes the name of this Timing block. By enclosing the name with double-quotes, characters such as spaces can
be made to be part of the name.

NOTE 5—The first statement in a WaveformTable is the period of the test vector to be applied to all signals. All signals
defined in a single WaveformTable must have the same period. In this example, the tester period is 500 ns long.

Each signal may have several different waveforms defined in a single WaveformTable. Each waveform defined for a sig-
nal will be referenced with a single character, called a WaveformChar, or “WFC.” Within each WaveformTable, each sig-
nal’s WaveformChars must be unique across all waveforms defined for the signal. However, different signals may define
the same WaveformChar for different waveforms.

A waveform needs some explanation. In STIL, a waveform is a series of “time” and “event” pairs. Each pair is defined
with a single STIL statement; these statements are also referred to as “timed events.” The “event” may be a special single
character defined to have a particular operation, or it may be a longer identifier as used in this example. This example
used the events “ForceDown,” “ForceUp,” “ForceOff,” “CompareUnknown,” “CompareHighWindow,” “CompareLow-
Window,” and “CompareOffWindow.” “ForceDown” and “ForceUp” are input or drive events; “ForceDown” forces a
logic low on an input, and “ForceUp” forces a logic high. “ForceOff” forces a logic float-state, or turns off any input
drivers. “CompareHighWindow,” “CompareLowWindow,” “CompareOffWindow,” and “CompareUnknown” are output,
or expect, events. “CompareHighWindow” expects a logic high, “CompareLowWindow” expects a logic low, and “Com-
pareOffWindow” expects a logic float-state value. To close a window strobe, the event “CompareUnknown” is used.

There are four distinct types of signals in this design. Each has its own waveform to represent the input or output infor-
mation required to test this design.

NOTE 6—The first waveform definition is for the signal DIR. This signal controls the “direction” of the bused signals,
which is fixed in this test. Even though it is fixed, information is defined for signal DIR to allow this signal to be driven
high or driven low at the start of each test cycle. Figure 4 shows graphically the two waveforms defined for this signal
and the STIL syntax.

Because both waveforms have the same timing, they can be merged into a single STIL statement. This shorthand syntax
allows multiple WaveformChars to be defined to the same event in the waveform, with states for each WaveformChar to
apply at that time. The relationship of WaveformChar to event characters is direct: the first WaveformChar (in the exam-
ple above, “0”) maps to the first waveform event (“ForceDown”), the second (“1”) maps to the second event
(“ForceUp”), and so on for each WaveformChar present. Note that a slash must be present to separate the event refer-
ences when more than one is present.

The signal OE_ has additional events defined to create a pulsed behavior. The merging process for this signal is not as
intuitive as DIR, as the process here requires defining events that do not cause a change of state on the signal. The only
reason to define these events is to support a single waveform definition for this signal. 

The ABUS signals are defined similarly to DIR, except that they are offset 10 ns into the vector boundary. Note the use
of a Group here to reference a collection of signals to be defined.

The BBUS signals are defined as outputs; at entry to the cycle, any test drivers are explicitly turned off with the
“ForceOff” event. The WaveformChar characters H, L and Z are mapped to the expected states “CompareHighWindow,”
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“CompareLowWindow,” and “CompareOffWindow,” respectively. The strobe window is opened at 260 ns. At 280 ns, the
strobe is closed with an “CompareUnknown” event.

NOTE 7—STIL supports two styles of comments: “block comments,” which are delimited by a “/*” and “*/”, and “com-
ments to the newline,” which are delimited by a “//” and terminated with a newline. The comments annotating the clos-
ing braces in this example use the style of comments to the newline.

NOTE 8—The PatternBurst block defines a collection of pattern names to be executed sequentially. (In this example,
there is only one pattern defined.) All patterns defined in a single PatternBurst are executed under a similar context, the
context being defined by the subsequent PatternExec statement. The references to pattern names in this block are one of
the few forward references allowed in STIL; patterns are not defined until the end of the STIL data.

NOTE 9—The PatternExec block defines how PatternBurst and Timing information is assembled to create the set of
tests to execute. The references in this block to Timing and PatternBurst names must have been defined before this block.

NOTE 10—Finally, the pattern data is defined. Pattern data constitutes the bulk of data in the STIL data set, and is gen-
erally processed one-vector-at-a time. In order to support processing this data as it is read, it is necessary to define pat-
tern data as the last data in a STIL test environment. 

In this example, the first statement in the Pattern block is a reference to a WaveformTable; the following vectors (until
another ‘W’ statement) will use the timing defined in the WaveformTable named “one.”

Note that while this pattern contains references to WaveformChars, and to names of WaveformTables, it does not contain
any direct references to the Timing block. This resolution is provided by the PatternExec statement. The PatternExec can
define references to different Timing blocks; as long as the WaveformChars and WaveformTable names are defined in the
referenced timing set, they can be applied to these same patterns.

Each V statement defines one test vector. In this example, each Vector defines the state to be applied to each signal using
the group reference ALL. The declaration order of signals in the group ALL is critical, as the mapping of Waveform-
Chars to signals in the group is performed linearly.

DIR { 01 { ’0ns’ ForceDown/ForceUp; }} 

DIR { 0 { ’0ns’ ForceDown; }}

DIR { 1 { ’0ns’ ForceUp; }}

T0 T0

ForceUp at start of vector (at T0)

ForceDown at start of vector (at T0)

500ns

Waveforms to be defined for signal DIR:

STIL syntax to generate these waveforms:

These two STIL statements can be merged
into the single statement:

 Figure 4—Waveforms associated with signal DIR



IEEE
Std 1450-1999 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL)

12 Copyright © 1999 IEEE. All rights reserved.

5.1.1 STIL grammatical constructs

STIL has two basic grammatical constructs for statements in the language. The first is a “simple statement,”
featuring a keyword, zero or more other tokens, and terminated by a semicolon. The second is a “block state-
ment,” which again starts with a keyword, may again be followed by zero or more tokens, and then has an
open-brace. After the open-brace, additional STIL language statements may occur. This statement is termi-
nated by a closing brace. These two statement formats are shown in Figure 6.

Figure 6 is intended to represent a simplification of the STIL syntax. Some statements, such as the assign-
ment statements in Figure 3 (ALL=0000000000LLLLLLLL), also require the “=” sign to be present.

STIL is a case-sensitive language. All STIL keywords start with an uppercase letter, and some may have
additional uppercase letters inside.

5.1.2 Complexity and language subsets

The previous example of STIL data has been reduced to present the basic language constructs only. As this
tutorial progresses through additional examples, different aspects of the STIL language will be presented.

There are many ways in which digital test information may be developed or provided. Some types of tests
may be more concerned about testing device specifications. Such tests may not care about how the device

OE_ { 01 {’0ns’ ForceUp; 
’200ns’ ForceDown/ForceUp; 
’300ns’ ForceUp;}}

OE_ { 0 { ’0ns’ ForceUp; ’200ns’ 
ForceDown; ’300ns’ ForceUp; }}

OE_ { 1 { ’0ns’ ForceUp; ’200ns’ 
ForceUp; ’300ns’ ForceUp; }}

Waveforms to be defined for signal OE_:
T0 T0

ForceUp at start of vector

500ns

(ForceUp at 200 ns)
(ForceUp at 300 ns)

ForceUp at start of vector
ForceDown at 200 ns after T0

ForceUp at 300 ns after T0

STIL syntax to generate these waveforms:

The value of the repeated events in the
second waveform only becomes apparent
after the merging of these two statements:

 Figure 5—Waveforms associated with the signal OE_

Keyword (OPTIONAL_TOKENS)*;

Keyword (OPTIONAL_TOKENS)* { (OPTIONAL_MORE_STATEMENTS)* }

Simple statement:

Block statement:

 Figure 6—STIL statement structure
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implements those specifications, only that the specifications are satisfied. Other types of tests may be con-
cerned with device operation, such as functional tests, and still others may only be testing the device from a
structural perspective (i.e., the elements present in the device and their interconnections) and not even have a
concept of how the device is meant to be used. STIL supports all of these perspectives. 

Another issue with passing information into the test environment is the definition of the test environment
itself. Test equipment is varied in performance, capability, and capacity. If the goal of STIL is to provide
information to be used in the test environment, how does the language ensure that this can happen? This is a
major issue in the test industry, and a standard language is not going to address the problem. It was deemed
critical that STIL attempt to represent tester capability relevant to digital IC and assembly test, in order to
provide a mechanism to move information onto “capable” test environments, and not to constrain the lan-
guage to the lowest common denominator of test capability.

Intentionally, STIL does not cause or enforce constraints on what can be represented. For example, you
could legally specify a waveform with eight events. Tools reading STIL, such as a tester vendor's pattern
compiler, will enforce the target tester constraints, or possibly translate the request into something that the
tester can support (e.g., two four-event waveforms multiplexed together).

These issues, and several others that will be presented as STIL is discussed in this standard, lead to the inev-
itable conclusion that STIL, in some aspects, is rather complex. The important perspective that should be
maintained is that not all of the complexity of STIL may be needed to represent device test information.Use
only those constructs that are appropriate to the needs.

While this tutorial presents STIL in a “phased” aspect, from “simple” or mandatory information to more
“advanced” constructs, it is important to remember that there are no actual classifications in the language.
This presentation is structured in this fashion solely to facilitate presentation of the concepts. 

5.2 Basic LS245

The previous example demonstrated a subset of the LS245 behavior. In this example, we present a complete
STIL test for this device.
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STIL 1.0;

Signals {
    DIR In;
    OE_ In;
    A0 InOut; A1 InOut; A2 InOut; A3 InOut;
    A4 InOut; A5 InOut; A6 InOut; A7 InOut;
    B0 InOut; B1 InOut; B2 InOut; B3 InOut;
    B4 InOut; B5 InOut; B6 InOut; B7 InOut;
}

SignalGroups {
    ABUS = ’A7 + A6 + A5 + A4 + A3 + A2 + A1 + A0’;
    BBUS = ’B7 + B6 + B5 + B4 + B3 + B2 + B1 + B0’;
    ALL  = ’DIR + OE_ + ABUS + BBUS’;
}

SignalGroups more {
    ABUS_I = ’ABUS’ { Base Hex 01; }
    BBUS_I = ’BBUS’ { Base Hex 01; }
    ABUS_O = ’ABUS’ { Base Hex LHZX; }
    BBUS_O = ’BBUS’ { Base Hex LHZX; }
}

Timing basic {
    WaveformTable one {
         Period ’500ns’;
         Waveforms {

 DIR { 01 { ’0ns’ ForceDown/ForceUp; }}
 OE_ { 01 { ’0ns’ ForceUp; ’200ns’ ForceDown/ForceUp;

  ’300ns’ ForceUp; }}
 ABUS { 01 { ’10ns’ ForceDown/ForceUp; }
   LHZX{ ’0ns’ ForceOff;’0ns’ CompareUnknown; ’260ns’ 

CompareLowWindow/CompareHighWindow/CompareOffWindow/CompareUnknown;
  ’280ns’ CompareUnknown;}}

 BBUS { 01 { ’10ns’ ForceDown/ForceUp; }
  LHZX{ ’0ns’ ForceOff;’0ns’ CompareUnknown; ’260ns’ 

CompareLowWindow/CompareHighWindow/CompareOffWindow/CompareUnknown;
  ’280ns’ CompareUnknown;}}

         } // end Waveforms
    } // end WaveformTable one
} // end Timing basic

1

2

3

4

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.

 Figure 7—Basic LS245
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PatternBurst basic_burst {
   SignalGroups more;

PatList { basic; }
} //end PatternBurst basic
PatternExec {
   Timing basic;
   PatternBurst basic_burst;
} //end PatternExec

Pattern basic {
       W one;
// No default states defined;
// the first vector must specify states on all signals.
       V { ALL=00ZZZZZZZZXXXXXXXX; }

       V { ABUS_I=00;BBUS_O=0000; }
       V { ABUS_I=80;BBUS_O=4000; }
       V { ABUS_I=40;BBUS_O=1000; }
       V { ABUS_I=20;BBUS_O=0400; }
       V { ABUS_I=10;BBUS_O=0100; }
       V { ABUS_I=08;BBUS_O=0040; }
       V { ABUS_I=04;BBUS_O=0010; }
       V { ABUS_I=02;BBUS_O=0004; }
       V { ABUS_I=01;BBUS_O=0001; }

       V { OE_=1; BBUS_O=FFFF; }

       V { DIR=1;OE_=0;ABUS_O=FFFF;BBUS_O=AAAA; }

       V { ABUS_O=0000;BBUS_I=00; }
       V { ABUS_O=0001;BBUS_I=01; }
       V { ABUS_O=0004;BBUS_I=02; }
       V { ABUS_O=0010;BBUS_I=04; }
       V { ABUS_O=0040;BBUS_I=08; }
       V { ABUS_O=0100;BBUS_I=10; }
       V { ABUS_O=0400;BBUS_I=20; }
       V { ABUS_O=1000;BBUS_I=40; }
       V { ABUS_O=4000;BBUS_I=80; }

       V { OE_=1; ABUS_O=FFFF; }
} //end Pattern basic

6

7

8

5

Figure 7—Basic LS245 (continued)
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Notes for Figure 7:

NOTE 1—In this example, the “A” and “B” buses are now defined as bidirectional, or InOut in STIL terminology.

NOTE 2—Another SignalGroup definition has been added to this example. This SignalGroup has a domain name
(“more” without the quotes) after the SignalGroup keyword. In STIL, names may optionally occur before the opening
brace of a block section. Named blocks are referenced differently than unnamed blocks. Unnamed blocks are considered
to contain “global” information; the information defined in that block may be used by any other sections after that block.
Named blocks are “local” information; in order to use that information, that domain name must be explicitly referenced
in a block after that declaration. The referencing mechanism for Timing blocks was already presented; the referencing
mechanism for SignalGroups is discussed below.

NOTE 3—This SignalGroup adds four more group definitions to groups previously defined in the unnamed Signal-
Group. These definitions contain the same signals, in the same order, but add references about a “Base” to each declara-
tion.

The “Base” statement is used to define a default number base to be used for assignment statements referencing this
group name. STIL supports the “WFC” base, which is the default mapping of WaveformChars one-to-one to signals in
the group; the “hex” base, which uses hexadecimal notation for defining WaveformChar mapping; or the “decimal” base,
which uses decimal notation to define WaveformChar references. 

To define “hex” or “decimal” mapping, the mapping of WaveformChars to bit values in the hex or decimal number must
be defined. This definition is provided by WaveformChar references after the hex or decimal word. In this example, the
first group defined is ABUS_I. ABUS_I is defined to use a hex base for signal assignment, and the hex values are defined
to map to the WaveformChars 0 and 1. 

The number of bits in the hex value required to specify the WaveformChar for each signal in a group is determined by
the number of the WaveformChar references present in the Base statement. In the definition of ABUS_I, two Waveform-
Chars are referenced. This requires one bit of a hex character to define the WaveformChar reference. The bit value to
WaveformChar mapping is performed linearly: the first WaveformChar reference is assigned the bit value 0, the second
WaveformChar reference is defined the value 1, and so on. Note that the values increase from left-to-right in this process;
the left-most WaveformChar is assigned zero, and each subsequent WaveformChar is incremented. This process may be
extended for as many WaveformChar characters desired.

It is critical to remember here that the only thing being defined is a relationship of bit-values inside a hex (or decimal)
value, to WaveformChars. 

The number of bits used for a hex or decimal value is always discrete for each signal in a group. If three WaveformChars
are defined in a hex or decimal Base, then two bits are required to define those three states. Unused values of the binary
field (such as the value “3” in a three-WaveformChar definition) cannot be specified.

In the third group definition, the group ABUS_O is defined with four WaveformChar references. The mapping of a hex
value assigned to this group is demonstrated in Figure 8.

NOTE 4—In this Timing block, the signals ABUS and BBUS are given multiple waveform definitions using two wave-
form statements each. Note that a single WaveformChar can only be used once in a WaveformTable per signal. Both
ABUS and BBUS are given WaveformChars: 0 and 1 for input waveforms, and H,L,Z, and X for output waveforms.

Note that while the ordered definition of WaveformChars in the WaveformTable matches the order defined in the “base”
statements contained in SignalGroups “more,” there is no relationship between these two ordered sets. The order of
WaveformChars in WaveformTables is aligned with the events defined in the waveform. The order of WaveformChars in
base statements in a SignalGroup defines a value used to map based-numbers to WaveformChars in vector statements.

NOTE 5—The SignalGroups block named “more” must be explicitly referenced to be used. The SignalGroups statement
here provides for the definitions in this named block to be available to any Patterns referenced here. Also note that the
Timing and Pattern names are the same (both are blocks named “basic”). Even though these names are the same, the
name space for each block type is different and, therefore, they refer to separate, unique blocks.
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NOTE 6—As stated in the comment above the first V{} statement, the first vector in this Pattern must define states for all
signals that will be used in this Pattern because there were no DefaultState values defined for these signals.

This vector uses the group ALL. ALL was defined without a base statement and, therefore, defaults to a one-to-one map-
ping of WaveformChars to signals in the group.

NOTE 7—The next vector is an incremental data vector. In STIL, only the data that changes from one vector to the next
needs to be identified. This vector makes use of the bus definitions in the SignalGroup “more” even though most of the
bits of these busses do not always change. ABUS_I is assigned the value 00 in this second vector, which will be inter-
preted as a hex value because of the definition of this group. Hex 00 maps to the bits 00000000. ABUS_I was defined
with two WaveformChar references, so each bit of this value is a reference to a WaveformChar value for a signal in this
group. All bits of ABUS are assigned the WaveformChar “0.”

BBUS_O is assigned the value 0000, which is again interpreted as a hex value because of the declaration of BBUS_O.
This expands to 16 0’s; however, BBUS_O was defined with four WaveformChar references, and so every two bits of
this value corresponds to a WaveformChar value for each signal in this bus. Each signal in BBUS_O is assigned the
WaveformChar “L” for this statement.

The next eight vectors are essentially the same vectors as in “hello tester,” as the A-bus is being driven and the B-bus is
being sampled. The walking-bit pattern is repeated in this sequence.

NOTE 8—On the 11th vector, the individual signal OE_ is referenced directly. This signal is assigned the Waveform-
Char “1,” which will hold the output disabled for this test cycle. BBUS is ignored in this vector from the “X” state, as all
signals are assigned the bit-values “11.”

The vector data then continues, testing the opposite direction of data propagation in this device.

5.3 STIL timing expressions/”Spec” information

This example defines a test for the LS245 design using spec timing information. Spec timing parameters are
defined using STIL constructs, and waveforms and stimulus are created to test device response against those
parameters. This test validates timing against “typical” parameters, which are defined here to be an arbitrary
amount less restrictive than the Max values.

WFC: L=00 H=01 Z=10 X=11

Hex Value “B” Bits “1011” 

Group ABUS_O is defined to map the following WaveformChar references:

Z for the first signal ref (value 10)
X for the second signal (value 11)

For example:

 Figure 8—Mapping of a hex value to the group ABUS_O
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STIL 1.0;

Signals {
    DIR In;
    OE_ In;
    A0 InOut; A1 InOut; A2 InOut; A3 InOut;
    A4 InOut; A5 InOut; A6 InOut; A7 InOut;
    B0 InOut; B1 InOut; B2 InOut; B3 InOut;
    B4 InOut; B5 InOut; B6 InOut; B7 InOut;
}

SignalGroups {
ABUS = ’A7 + A6 + A5 + A4 + A3 + A2 + A1 + A0’;
BBUS = ’B7 + B6 + B5 + B4 + B3 + B2 + B1 + B0’;
BUSES= ’ABUS + BBUS’;
ALL  = ’DIR + OE_ + BUSES’;

}

SignalGroups more {
    ABUS_I = ’ABUS’ { Base Hex 01; }
    BBUS_I = ’BBUS’ { Base Hex 01; }
}

Spec tmode_spec {
Category tmode {

tplh { Typ ’13.00ns’;Max ’12.00ns’; }
tphl { Typ ’13.00ns’;Max ’12.00ns’; }
tpzl { Typ ’41.00ns’;Max ’40.00ns’; }
tpzh { Typ ’41.00ns’;Max ’40.00ns’; }
tplz { Typ ’26.00ns’;Max ’25.00ns’; }
tphz { Typ ’26.00ns’;Max ’25.00ns’; }
strobe_width = ’20ns’;
tperiod  = ’500ns’;
}

}

Selector tmode_typ {
tplh Typ;
tphl Typ;
tpzl Typ;
tpzh Typ;
tplz Typ;
tphz Typ;

}

1

2

3

 Figure 9—Spec timing tests LS245

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.
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Timing to_specs {
    WaveformTable pulsed_oe {
         Period ’tperiod’;
         Waveforms {

 DIR { 01 { ’0ns’ D/U; }}
 OE_ { 01 { ’0ns’ U; OE_MARK: ’200ns’ D/U;

  OE_CLOSE: ’OE_MARK+100ns’ U; }}
 BUSES{ 01 { ’10ns’ D/U; }
   L { ’0ns’ Z;’0ns’ X; ’OE_MARK+tpzl’ l;

  ’@+strobe_width’ X;}
   H { ’0ns’ Z;’0ns’ X; ’OE_MARK+tpzh’ h;

  ’@+strobe_width’ X;}
   D { ’0ns’ Z;’0ns’ X; ’OE_CLOSE+tplz’ t;

  ’@+strobe_width’ X;}
   U { ’0ns’ Z;’0ns’ X; ’OE_CLOSE+tphz’ t;

  ’@+strobe_width’ X;}
   X { ’0ns’ Z;’0ns’ X; }}

         } // end Waveforms
    } // end WaveformTable pulsed_oe
    WaveformTable const_oe {
         Period ’tperiod’;
         Waveforms {

 DIR { 01 { ’0ns’ D/U; }}
 OE_ { 01 { ’0ns’ D; ’tperiod-strobe_width’ U;}}
 BUSES{ 01 { IN_MARK: ’tperiod/10’ D/U; }
   L { ’0ns’ Z;’0ns’ X; ’IN_MARK+tphl’ l;

  ’@+strobe_width’ X;}
   H { ’0ns’ Z;’0ns’ X; ’IN_MARK+tplh’ h;

  ’@+strobe_width’ X;}
   X { ’0ns’ Z;’0ns’ X; }}

         } // end Waveforms
    } // end WaveformTable const_oe
} // end Timing to_specs

6
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Figure 9—Spec timing tests LS245 (continued)
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PatternBurst spec_check_burst {
SignalGroups more;
PatList { spec_check; }

} //end PatternBurst spec_check_burst

PatternExec {
Timing to_specs;
Selector tmode_typ;
Category tmode;
PatternBurst spec_check_burst;

} //end PatternExec

Pattern spec_check {
W pulsed_oe;

// the first vector must specify states on all signals.
V { ALL=00DDDDDDDDXXXXXXXX; }

// first set of tests check delays from OE_ signal
V { ABUS_I=00;BBUS=LLLLLLLL; } //check BBUS tpzl spec
V { ABUS_I=FF;BBUS=HHHHHHHH; } //check BBUS tpzh spec
V { ABUS_I=00;BBUS=DDDDDDDD; } //check BBUS tplz spec
V { ABUS_I=FF;BBUS=UUUUUUUU; } //check BBUS tphz spec

 V { DIR=1; ABUS=XXXXXXXX; BBUS=DDDDDDDD; }
V { BBUS_I=00;ABUS=LLLLLLLL; } //check ABUS tpzl spec
V { BBUS_I=FF;ABUS=HHHHHHHH; } //check ABUS tpzh spec
V { BBUS_I=00;ABUS=DDDDDDDD; } //check ABUS tplz spec
V { BBUS_I=FF;ABUS=UUUUUUUU; } //check ABUS tphz spec
W const_oe;

// second set of tests check data propagation delays
V { BBUS_I=00;ABUS=LLLLLLLL; } //check ABUS tphl spec
V { BBUS_I=FF;ABUS=HHHHHHHH; } //check ABUS tplh spec

 V { DIR=0; BBUS=XXXXXXXX; ABUS=XXXXXXXX; }
V { ABUS_I=00;BBUS=LLLLLLLL; }
V { ABUS_I=FF;BBUS=HHHHHHHH; } //check BBUS tplh spec
V { ABUS_I=00;BBUS=LLLLLLLL; } //check BBUS tphl spec

} //end Pattern spec_check

8

Figure 9—Spec timing tests LS245 (continued)
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Notes for Figure 9:

NOTE 1—The Spec block defines spec variables in STIL. All spec variables are defined under categories in this block.
Categories are used to reference sets of spec variables, and it is the Category block name that is important when refer-
encing variables. The Spec block name is not significant.

NOTE 2—This Category defines seven variables. The first six variables are parameters representing propagation delays
for the A and B bus signals. Each of these delays has two values defined in this example: a Typ (typical) value, and a
Max (maximum) value. A variable may be assigned only one value for each of these fields in a Category, but may be
defined to a different value when using a different Category.

The last parameter defines the tester strobe width value. This parameter has only one value, which is interpreted to be the
typical value for this parameter.

NOTE 3—The Selector block defines which value of a Spec variable to use. The selector may specify one of four
indexes to reference a Spec value: Min, Typ, Max, or Meas. Meas values are determined during test execution and are
not explicitly specified in the Spec information. Note that the selector does not indicate which Category to use to identify
a Spec value. The PatternExec provides that information.

The Timing block for this environment contains two WaveformTable definitions. The first definition defines a pulsed
OE_ signal and evaluates the propagation delay when transitioning into and out-of a float-state condition. The second
definition holds the OE_ signal low for most of the test cycle to keep the outputs active, and it changes the data with the
outputs enabled to test propagation delays from one bus to the other.

NOTE 4—These Waveform definitions use the single character “event” operation vs. the long “event” operation names.
Event “D” is equivalent to “ForceDown,” and “U” is equivalent to “ForceUp.” Either notation (single-character or full-
name event description) may be used interchangeably.

The waveform defined for signal OE_ includes two event_label definitions: one for OE_MARK, and the other for
OE_CLOSE. These labels operate in the same fashion as Spec variables except they are scoped only to the current Wave-
formTable. Once defined, they may be referenced in subsequent timing definitions in that WaveformTable to provide a
time reference from one waveform event to another waveform event. Labels defined in Timing waveforms only have one
value, which is the current value of the labeled event given the environment defined for that Timing block.

NOTE 5—The waveform defined for WaveformChar “L” in the “BUSES” group contains two timing expressions. The
first expression, “OE_MARK+tpzl,” uses the OE_MARK label defined with respect to the OE_ signal in the previous
waveform. This defines a tester window strobe to check for a logic low state ‘tpzl’ nanoseconds after the time of
OE_MARK, which is the time that the OE_ signal went low (active). The second expression, “@+strobe_width,” uses
the special event_label @, which is the time of the previous timed event in the waveform; this timed event causes the
window strobe to terminate “strobe_width” nanoseconds after the previous event. 

NOTE 6—This design defines two different propagation times to float-state: one delay when coming from a logic-low,
and a different delay when coming from a logic-high. Checking the design to this specification requires two separate
waveforms to be declared: one for the transition from the low state, and another for the transition from the high state.
These are associated with the WaveformChars D and U, respectively.

Figure 10 shows graphically the waveforms associated with signals in the WaveformTable pulsed_oe, and their associa-
tion to timing specifications in the design.

NOTE 7—There are still two remaining timing specifications to validate. These are the ‘tplh’ and ‘tphl’ parameters. To
validate these two specifications, the OE_ signal must be enabled and held constant while the “input” bus is changed.
This is the purpose of the WaveformTable const_oe. In this WaveformTable, the bused signals (in output mode) are vali-
dated relative to the specified time of the input bus events in order to check the propagation delay.

NOTE 8—The PatternExec is responsible for defining the resolution of all timing variables by referencing both a spec
Category name and a Selector name. Note this particular test references all “typical” values for this design; any device
that is slower than this typical timing will fail this test.
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5.4 Structural test (scan)

STIL supports structural test (scan-based) in addition to functional-based testing. To illustrate the scan con-
structs available in STIL, the previous LS245 example will hypothetically include scan test structures;
namely, some signals will be identified as scan signals, and both procedures and macros will be provided to
perform the load and unload operations.

T0 T0

OE_ 

Input Bus 

Output Bus 

tplz (coming from low)
tphz (coming from high)

tpzl (going low)
tpzh (going high)

time of data
change does
not affect output

strobe location
for high/low checks

strobe location
for float-state checks

 Figure 10—Waveform characteristics of WaveformTable pulsed_oe
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STIL 1.0;

Signals {
    DIR In;
    OE_ In;
    A0 InOut; A1 InOut; A2 InOut; A3 InOut;
    A4 InOut; A5 InOut; A6 InOut; A7 InOut;
    B0 InOut; B1 InOut; B2 InOut; B3 InOut;
    B4 InOut; B5 InOut; B6 InOut; B7 InOut;
}

SignalGroups {
    ABUS  = ’A0 + A1 + A2 + A3 + A4 + A5 + A6 + A7’;
    BBUS  = ’B0 + B1 + B2 + B3 + B4 + B5 + B6 + B7’;
    ALL   = ’DIR + OE_ + ABUS + BBUS’;

 SI1   = ’A0’   { ScanIn  30; } 
 SI2   = ’A1’   { ScanIn  34; } 
 SO1   = ’B0’   { ScanOut 30; } 
 SO2   = ’B1’   { ScanOut 34; } 

    MASTER= ’A6’;
    SLAVE = ’A7’; 
}
Timing {
    WaveformTable one {
         Period ’500ns’;
         Waveforms {

 DIR { 10   { ’0ns’ U/D; }}
  OE_ { 10   { ’0ns’ U; ’200ns’ U/D; ’300ns’ U; }}

 ABUS { 10   { ’10ns’ U/D; }}
 BBUS { 10   { ’10ns’ U/D; }}
 ABUS {HLZX { ’0ns’ Z;’0ns’ X; ’260ns’ H/L/T/X;’280ns’ X;}}
 BBUS {HLZX { ’0ns’ Z;’0ns’ X; ’260ns’ H/L/T/X;’280ns’ X;}}

         }
    }               // end WaveformTable one
    WaveformTable two {
         Period ’100ns’;
         Waveforms {

 ALL { 10 { ’0ns’ U/D; }}
 ALL { HLZX{ ’0ns’ Z; ’50ns’ H/L/T/X; }}
 MASTER{ P { ’0ns’ D; ’10ns’ U; ’40ns’ D; }}
 SLAVE { P { ’0ns’ D; ’60ns’ U; ’90ns’ D; }}

         }
    }               // end WaveformTable two
}                   // end Timing 

1

2

 Figure 11—LS245 with hypothetical scan

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.
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PatternBurst “scan_burst” {
PatList { “scan”; }

}
PatternExec {

PatternBurst “scan_burst”;
}

MacroDefs {
“scan” {

W two;
C { MASTER=P; SLAVE=P; SI1=0; SI2=0; SO1=X; SO2=X; }
Shift { V { SI1=#; SI2=#; SO1=#; SO2=#; } }
W one;
C { MASTER=0; SLAVE=0;}

     }
} // end MacroDefs

Procedures {
“scan” {           

W two;
         V { ALL=0011ZZZZZZXXXXXXXX; } // define all signals 

Shift { V { MASTER=P; SLAVE=P; SI1=#;SI2=#;SO1=#;SO2=#;}}
     }

} // end procedures

Pattern “scan” {
       W one;
       V { ALL=00ZZZZZZZZXXXXXXXX; } // define all signals 
       Macro “scan” {
              SI1=000000000000000000000000000000;
              SI2=1111111111111111111111111111111111; }
       V { MASTER=1; OE_=1; B0=H; }
       Call “scan” {
              SO1=LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL;
              SO2=\l10 HHHHHHHHHH; }

}                    //end Pattern “scan”

3
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Figure 11—LS245 with hypothetical scan (continued)
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Notes for Figure 11:

NOTE 1—Here we hypothetically define A0 and A1 as scan inputs, and B0 and B1 as scan outputs. The scan chain
lengths are also defined to be 30 and 34 via the ScanIn and ScanOut keywords.

NOTE 2—The global Timing block now defines two WaveformTables. The first WaveformTable (one) is used to define
the tester cycles for non-scan activity. These cycles typically strobe outputs (measure) at the end of the cycle. The second
WaveformTable (two) is used to define the tester cycles for scan activity. These cycles typically have a faster period, and
strobe outputs before shifting the results in the scan chain. This table defines pulses (WaveformChar “P”) for the
MASTER and SLAVE clocks to perform the shifting. Default waveforms are specified for ALL signals.   

NOTE 3—The example uses only the global SignalGroups, the global Timing, the global MacroDefs, and the global
Procedures blocks. Therefore, the PatternBurst only needs to define the patterns to execute (“scan”), and the PatternExec
only needs to reference the PatternBurst (as Timing is global).

NOTE 4—The MacroDefs block defines a single macro (“scan”). This macro first switches to the scan timings (“two”).
This macro then defines a Condition statement, which defines what the current WaveformChar for a signal is assumed to
be, but doesn’t output a vector. The first vector following this macro will output this change. The Condition statement is
used to start pulsing the MASTER and SLAVE clocks. 

Condition statements are useful when setup information is available; however, if this setup is applied as a vector, then the
subsequent data becomes difficult to align. A typical situation in which to use a Condition statement is to enable the scan
clocks preceding a Shift operation, as is done in this macro. Condition statements are also useful at the end of a macro to
set up information for the return. Note that Condition statements would not be useful at the end of procedures, because
procedures return to the state before the procedure call, and any condition information would be discarded.

This macro also defines the “pad state” for the scan pins. The last defined state before a “#” reference is used as the pad
state for scan pins. When SI1 and SI2 need to be pre-padded to normalize all chains to the same length, 0 is used. When
SO1 and SO2 need to be post-padded during scan length normalization, X’s are used.

Scan testing introduces a special Shift block, which contains one or more vectors required to shift one scan event in or
out of scan chains. Vectors within the Shift block use a special WaveformChar (“#”) in signal assignments to indicate
that scan data is to be substituted in the vector for the signal. The values to be substituted are defined in the macro invo-
cation, discussed below. 

The macro then switches the WaveformTable reference back to “one.”

Lastly, the macro specifies a Condition statement to turn the MASTER and SLAVE clocks to their off states (“0”).

Note that this block does not have a domain_name. The macro defined in this block is treated as a “global” name; any
Pattern can reference this macro unless the macro name “scan” is defined in another (named) Macro block.

NOTE 5—The Procedures block defines a single procedure called “scan.” Note that the same name may be used for dif-
ferent blocks when the name spaces are unique (pattern, macros, and procedures are all called “scan”).

The procedure must first define all signals and the current WaveformTable, since nothing is assumed from the calling
environment (the environment may be different for each call of the procedure). This is the major difference between pro-
cedures and macros.

The procedure defines a Shift block to apply the scan data. In this procedure, however, the C statement was not used to
condition signals before the first V statement (for the sake of this example). Therefore, the MASTER and SLAVE clocks
are explicitly defined as pulsing (“P”) in the Shift block’s vector. The pad event for scan signals is the last defined Wave-
formChar from the previous vector (“1” for inputs, “X” for outputs).

Remember that upon return from a procedure call, the environment prior to the procedure invocation is reinstated, as dis-
cussed in NOTE 8.

NOTE 6—The Macro statement is used to invoke a macro. It allows data to be defined for substitution within the macro.
Specifically, it defines the scan input data for SI1 and SI2. Since no data was defined for the scan outputs, but the macro
defined the substitute WaveformChar (“#”) for them (SO1 and SO2), then the last defined WaveformChar is used instead.
(The pad states X, as defined in the macro’s first Condition statement.) 
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NOTE 7—The WaveformChars in effect after the macro include the last states from the macro. Therefore, the last state
for SI1 is “0” and for SI2 is “1” (the last states of the load data). The states for SO1 and SO2 will be X, per the macro’s
first Condition statement. The Macro’s second Condition statement defines the MASTER and SLAVE clocks as off
(“0”). However, the vector immediately after the macro defines MASTER as a force up (“1”). Therefore, this vector out-
puts a “1” for MASTER and a “0” for SLAVE. This illustrates how the Condition statement may be used to define
default values, and how the Vector can override it.

NOTE 8—The procedure Call performs the unload operation (only defines the scan out pins). SO2 is an “incomplete”
unload, only performing 10 observations. Note the length is specified before the data, using the \l construct (“l” is a low-
ercase “ell”), followed by the number of bits specified (10). The length of the scan data for a signal must be either explic-
itly defined via “\l,” or it may default to the “ScanIn” or “ScanOut” length if the length information is specified. “\l10”
precedes the actual scan data, since only 10 observations are required and the default length is 34. Therefore, the scan is
normalized to the length of SO1 (30). The padding used is defined in the procedure. Upon returning from the Call, the
environment prior to the Call is active; that is, the current WaveformTable is “one,” and MASTER is “P,” SLAVE is “0,”
SI1 is “0,” SI2 is “1,” and SO1 and SO2 are “X.” (Because there is no Vector statement after this Call, however, the
restored state is not important to these test vectors.)

5.5 Advanced scan

This example illustrates advanced scan features, including: 

— Scan data that cannot be merged by STIL translators; 
— Scan data that may be merged by STIL translators;
— Scan data that has been merged by a STIL creator;
— Scan data with a skewed load;
— Scan data with a skewed unload.

Scan testing typically consists of a set of “tests.” Each “test” typically consists of:

— Device preconditioning: Scanning states (loading) into the internal latches;
— Device test: Applying stimuli and clocking to inputs, and observing results on outputs;
— Device observation: Scanning states (unloading) from the internal latches.

Merged data refers to combining a previous test’s observation (unload) with the next test’s preconditioning
(load). The primary reason to merge scan tests is to decrease the volume of tester vectors that impacts both
tester usage and test time. 

Scan data merging may be performed by a STIL translator or by a STIL writer. Merging data by the STIL
translator allows the translator to safely maximize the utilization of the tester’s resources (merging as many
tests as can fit within hardware limitations). Also, the translator is bound by rules defining when scan data
may be merged. Merging data by a STIL writer may bypass these rules.

A skewed load test refers to applying an extra MASTER clock after loading a scan chain. This will shift the
contents of the SLAVE latches into the next MASTER latches, potentially skewing the contents of individual
shift register latch’s MASTER/SLAVE pairs. 

A skewed unload test refers to applying an extra SLAVE clock prior to performing the scan unload. This will
result in observing the contents of the MASTER latches vs. the SLAVE latches during the unload.
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STIL 1.0;
Signals {

reset  In;  scan_mode  In;
sys_clk In; MASTER In; SLAVE In; capture In;
scan_in1 In; scan_in2 In; scan_out1 Out; scan_out2 Out;
pi1 In; pi2 In; pi3 In; pi4 In;
po1 Out; po2 Out; po3 Out; po4 Out;

}
SignalGroups {

shift_clks  = ’MASTER + SLAVE’;
capture_clks = ’SLAVE + capture’;
all_scan_clks= ’MASTER + SLAVE + capture’;
pis  = ’pi1 + pi2 + pi3 + pi4’;
pos  = ’po1 + po2 + po3 + po4’;
si1  = ’scan_in1’ { ScanIn 10; }
si2  = ’scan_in2’ { ScanIn 10; }
so1  = ’scan_out1’ { ScanOut 10; }
so2  = ’scan_out2’ { ScanOut 10; }
sins  = ’scan_in1 + scan_in2’;
souts  = ’scan_out1 + scan_out2’;
all=’reset+scan_mode+sys_clk+all_scan_clks+sins+souts+pis+pos’;

}
Timing one {
    WaveformTable wft_base {  Period ’1000ns’;
         Waveforms {

reset { 10 { ’500ns’ U/D; } }
scan_mode { 10 { ’500ns’ U/D; } }
sys_clk { 10 { ’0ns’ U; ’500ns’ U/D; } }
all_scan_clks { 10 { ’0ns’ U/D; } }
sins { 10 { ’500ns’ U/D; } }
souts { XHL { ’0ns’ X; ’900ns’ X/H/L; } }
pis { 10 { ’500ns’ U/D; } }
pos { HL { ’900ns’ H/L; } }

         }
    }               // end WaveformTable wft_base
    WaveformTable scan { Period ’100ns’;
         Waveforms {

reset { 10 { ’50ns’ U/D; } }
scan_mode { 10{ ’50ns’ U/D; } }
sys_clk { 10 { ’0ns’ U; ’50ns’ U/D; } }
MASTER { 10 { ’0ns’ U; ’10ns’ U/D; ’20ns’ U; } }
SLAVE  { 10 { ’0ns’ U; ’30ns’ U/D; ’40ns’ U; } }
capture { 10 { ’0ns’ U; ’10ns’ U/D; ’20ns’ U; } }
sins { 10 { ’50ns’ U/D; } }
souts { HLX { ’0ns’ X; ’25ns’ H/L/X; } }
pis { 10 { ’50ns’ U/D; } }
pos { HL { ’90ns’ H/L; } }

         }
    }               // end WaveformTable scan
}                   // end Timing one

 Figure 12—Advanced scan

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.
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Procedures {
 unload_load {

W scan;
C{ all=100 001 00 XX 0000 XXXX; }
Shift {

V{si1=#; si2=#; so1=#; so2=#;}
}

} // unload_load

 unload_skewedload {
W scan;
C{ all=100 001 00 XX 0000 XXXX; }
Shift {

V{si1=#; si2=#; so1=#; so2=#;}
}
V{MASTER=0; SLAVE=1; si1=#; si2=#; so1=X; so2=X;}

} // unload_skewedload

skewedunload_load {
W scan;
V{ all=100 101 00 XX 0000 XXXX; }
Shift {

V{MASTER=0; si1=#; si2=#; so1=#; so2=#;}
}

} // skewedunload_load
} // Procedures

1

2

3

Figure 12—Advanced scan (continued)
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PatternBurst scanpats{
PatList {

       reset;
       scan_loads;

}
}

PatternExec {
    Timing one;
    PatternBurst scanpats;
}

Pattern reset {
W wft_base;
//        Mode Clks Si  So PIs  POs
V { all = 010  111  00  XX 0000 XXXX;} 
V { reset = 1; }

}

Pattern scan_loads {
W wft_base;
V { all = 110 111 00 XX 0000 XXXX;}  
Call unload_load { 

si1=1101110101;
si2=0000111011; 

} 
V { pis = 1010;} // FORCE PIs 
V { pos = HLHL;} // MEASURE POs 

// FIRE CAPTURE CLK (SUBSET OF all_scan_clks)
V { capture_clks = 00; pos = XXXX;}  
Call unload_load { 

so1=HLHHHLHLHL; 
so2=HHHLLHHLHL;

}

BreakPoint;
V { pis = 0101; }
Call unload_load {

si1=1101110101;
si2=0000111011;

}
V { pis = 1111;} // FORCE PIs
V { pos = LLLH;} // MEASURE POs
V { capture_clks = 00; pos = XXXX;} // FIRE CAPTURE CLK

4

5

Figure 12—Advanced scan (continued)
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Call unload_load { 
so1=HLHLLLHLHL; 
so2=HLHLHHHLHL;

}

BreakPoint;
Call unload_load {

si1=1110010101;
si2=0110110011;

}
V { pis = 1011;} // FORCE PIs
V { pos = HHLH;} // MEASURE POs
V { capture_clks = 00; pos = XXXX;} // FIRE CAPTURE CLK
Call unload_load {

so1=HLHLHLHLHL; 
so2=HLHHHHHLLL;
si1=0010010011;
si2=0100010011;

}
V { pis = 1001;} // FORCE PIs
V { pos = HLLH;} // MEASURE POs
V { capture_clks = 00; pos = XXXX;} // FIRE CAPTURE CLK
Call unload_load {

so1=LLLLHLHLLL; 
so2=HHHHLHHLLL;

}

BreakPoint;
Call unload_skewedload {

si1=\l11 11100101010;
si2=\l11 01101100111;

}
V { pis = 0011;} // FORCE PIs
V { pos = LLHH;} // MEASURE POs
V { capture_clks = 00; pos = XXXX;} // FIRE CAPTURE CLK
Call skewedunload_load {

so1=LLHLLLHLLL; 
so2=HLHLLHHLHH;

}
} // Pattern scan_loads

6
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Figure 12—Advanced scan (continued)
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Notes for Figure 12:

NOTE 1—The unload_load procedure is used to apply non-skewed scan data. It utilizes the WaveformTable named Scan
to execute the scan tester cycles with a 100 ns period, and to strobe the scan output signals prior to shifting. The initial
Condition statement defines the background states for all signals during application of the scan data in the Shift block,
including activating the MASTER and SLAVE clocks, and defining the possible padding states for scan inputs (0) and
scan outputs (X). 

NOTE 2—The unload_skewedload procedure is identical to the unload_load procedure, except that it contains an extra
Vector after the Shift block. This Vector explicitly specifies a MASTER clock (for clarity), disables the SLAVE clock
(1), and specifies to substitute the final states of the scan data. All other scan data will be applied by the Shift block. A
skewed load implies the need for one extra scan input state. Therefore, standard scan data normalization would pad an
extra “X” state to scan outputs if the scan data is merged. 

NOTE 3—The skewedunload_load procedure replaces the initializing condition with a Vector which applies an initial
SLAVE clock. This will cause the MASTER latches to be observed during the unload instead of the SLAVE latches.
Also, the Vector in the Shift block now specifies a MASTER clock, since the previous vector had disabled the MASTER
clock.

NOTE 4—The first call to the unload_load procedure will precondition the device for a test. The scan outputs will be at
X because no scan output data was specified in the Call, which then uses the pad state to specify data for those signals.

NOTE 5—This is an example of non-mergeable scan data. A Vector exists between the call to unload_load for the scan
output data and the call to unload_load with the scan input data. This means that the Vector must be performed after the
scan output and before the scan input may occur. 

NOTE 6—This is an example of mergeable scan data. The same procedure is called back to back for the scan output data
and the scan input data, with no Vectors in-between, and no overlap of the scan signals from the two Call statements.
This condition ensures that the state of all device signals are the same during the unload and load shift blocks, and the
same pre-shift and post-shift vectors are applied. Therefore, STIL translators may merge the scan data and apply the
inputs while simultaneously observing the previous tests’ results. 

NOTE 7—This is an example of pre-merged data, generated by a STIL creator. It explicitly has specified both the scan
input and output data to be applied together.

NOTE 8—This is an example of skewed load. Two things should be noted. First, this load is not mergeable with the pre-
vious unload because different procedures are used. Second, the scan input data has an extra state to be applied. This
requires using the \l flag on the scan input data to override the default scan data length.

NOTE 9—This is an example of skewed unload. 

5.5.1 Scan data merging

A common test time reduction technique, referred to here as Scan Merging, combines scan-unloads with
subsequent scan-loads; the load data preconditions the internal latches, while simultaneously unloading and
observing the previous latch states. To perform merging, the STIL translator needs to normalize all scan out-
puts with subsequent scan inputs to a common length. 

STIL translators may perform merging if the following conditions are true: 

a) The state of the device is unchanged between the two Call or Macro statements (e.g., there are no V,
C, or W statements between the unload and the load).

b) The same Procedure or Macro is referenced by the Call or Macro statements.
c) No Signal is defined in the two Call or two Macro statements. 



IEEE
Std 1450-1999 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL)

32 Copyright © 1999 IEEE. All rights reserved.

Scan data may be specified already merged. In this case, one or more scan inputs and one or more scan out-
puts would be specified in a Call or Macro block. Merging scan data in STIL, however, may lead to errors at
the tester. If a large Pattern had to be split into multiple tester buffers, then the preconditioning for a buffer
may be dependent on the previous buffer. If the tester powers the DUT down between buffers, or if the buff-
ers are executed out of sequence, then their vectors might fail.

5.6 IEEE Std 1149.1-1990 scan

This example (Figure 13) illustrates IEEE Std 1149.1-19905 scan features, including applying scan data out-
side of the Shift block. 

Notes for Figure 13:

NOTE 1—State changes occur based on TMS signal present at rising edge of TCK.

NOTE 2—Output (TDO) becomes valid after the falling edge of TCK within either the “SHIFT-DR” or “SHIFT-IR”
states, and is valid until the next falling edge.

NOTE 3—TAP controller instructions are 1 byte long and are represented by two hex characters (e.g., 7F = 01111111).

5IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture, is available from the Institute of Electrical
and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA (http://www.standards.ieee.org/).

TDO

TDI

TMS

TCK

100 200 300 4000

 Figure 13—IEEE Std 1149.1-1990 example timings
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STIL 1.0;

Signals {
TDO Out;
TCK In;
TDI In;
TMS In;
TRST In;
SYSCLK In;
HRESET In;

}

SignalGroups {
all = ’TDO + TCK + TDI + TMS + TRST + SYSCLK + HRESET’;
si  = ’TDI’{ ScanIn 62; Base Hex 01; }
so  = ’TDO’{ ScanOut 62;  Base Hex LHX; }

}
Timing {
    WaveformTable base {
         Period ’400ns’;
         Waveforms {

TCK { 0P { ’0ns’ D; ’100ns’ D/U; ’300ns’ D; } }
SYSCLK { 0P { ’0ns’ D; ’100ns’ D/U; ’300ns’ D; } }
TDI  { 01 { ’0ns’ D/U; } }
TMS  { 01 { ’0ns’ D/U; } }
TRST  { 01 { ’0ns’ D/U; } }
HRESET { 01 { ’0ns’ D/U; } }
TDO  { LHX{ ’0ns’ Z;  ’150ns’ L/H/X; } }

         }
    }  // WaveformTable base
} // Timing 

Procedures {
    reset {
        W base;
        // RESET - TRST AND HRESET ACTIVE(LOW)
        Loop  4095 {
            V { all = X0 0 1 0P0; }
        }

        // DEASSERT TRST
        V { all = XP 0 0 1P0; }     // TEST-LOGIC-RESET
    } // reset

1

 Figure 14—IEEE Std 1149.1-1990 scan

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.
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// Scan starts and ends in run_test_idle state and assumes either
// the WAITR or BIST_RESULTS instruction is loaded
scan {
        // PUT DEVICE IN SCAN STATE(SHIFT-DR)
        V { all = XP 0 1 1P1; }      //  SELECT-DR-SCAN
        V { all = XP 0 0 1P1; }      //  CAPTURE-DR
        V { all = XP 0 0 1P1; }      //  SHIFT-DR

        // LOAD / UNLOAD SCAN CHAIN
        Shift {
            V { all = #P # 0 1P1; }  //  SHIFT-DR
        }

        // LAST BIT LOADED WITH TRANSITION STATE
        V { all = #P # 1 1P1; }      //  EXIT1-DR

        // RESUME RUN-TEST/IDLE
        V { all = XP 0 1 1P1; }      //  UPDATE-DR
        V { all = XP 0 0 1P1; }      //  RUN-TEST/IDLE
    } // scan
} // Procedures

PatternBurst pats{
PatList {

           bist;
}

}
PatternExec {
    PatternBurst pats;
}

Pattern bist {
   W base;
   // RESET THE FSM
   Call reset;

2

3

4

Figure 14—IEEE Std 1149.1-1990 scan (continued)
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   // LOAD INSTRUCTION 'FFRZ' = 05
   V { all = XP 0 0 1P0; }     // RUN-TEST/IDLE
   V { all = XP 0 1 1P0; }     // SELECT-DR-SCAN
   V { all = XP 0 1 1P0; }     // SELECT-IR-SCAN
   V { all = XP 0 0 1P0; }     // CAPTURE-IR
   V { all = XP 0 0 1P0; }     // SHIFT-IR
   V { all = HP 1 0 1P0; }     // SHIFT-IR
   V { all = LP 0 0 1P0; }     // SHIFT-IR
   V { all = LP 1 0 1P0; }     // SHIFT-IR
   V { all = LP 0 0 1P0; }     // SHIFT-IR
   V { all = LP 0 0 1P0; }     // SHIFT-IR
   V { all = LP 0 0 1P0; }     // SHIFT-IR
   V { all = LP 0 0 1P0; }     // SHIFT-IR
   V { all = LP 0 1 1P0; }     // EXIT1-IR
   V { all = XP 0 1 1P0; }     // UPDATE-IR
   V { all = XP 0 0 1P0; }     // RUN-TEST/IDLE
   V { all = XP 0 0 1P0; }     // RUN-TEST/IDLE
   
   // ALLOW FFRZ TO SET
   Loop 14 {
      V { all = XP 0 0 1P0; }  // RUN-TEST/IDLE
   }
   
   // DEASSERT HRESET/LOAD 'WAITR' = A4
   V { all = XP 0 0 1P1; }     // RUN-TEST/IDLE
   V { all = XP 0 1 1P1; }     // SELECT-DR-SCA
   V { all = XP 0 1 1P1; }     // SELECT-IR-SCA
   V { all = XP 0 0 1P1; }     // CAPTURE-IR
   V { all = XP 0 0 1P1; }     // SHIFT-IR
   V { all = HP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = HP 1 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 1 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 1 1 1P1; }     // EXIT1-IR
   V { all = XP 0 1 1P1; }     // UPDATE-IR
   V { all = XP 0 0 1P1; }     // RUN-TEST/IDLE
   V { all = XP 0 0 1P1; }     // RUN-TEST/IDLE
 
                    .   .   .

5

6

Figure 14—IEEE Std 1149.1-1990 scan (continued)
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   // LOAD THE SCAN CHAIN
   Call scan { si = 3096A5B66CF42E8C; }
      
   // LOAD INSTRUCTION 'RUN_BIST' = 0A
   V { all = XP 0 0 1P1; }     // RUN-TEST/IDLE
   V { all = XP 0 1 1P1; }     // SELECT-DR-SCA
   V { all = XP 0 1 1P1; }     // SELECT-IR-SCA
   V { all = XP 0 0 1P1; }     // CAPTURE-IR
   V { all = XP 0 0 1P1; }     // SHIFT-IR
   V { all = HP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 1 0 1P1; }     // SHIFT-IR
   V { all = HP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 1 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 0 1 1P1; }     // EXIT1-IR
   V { all = XP 0 1 1P1; }     // UPDATE-IR
   V { all = XP 0 0 1P1; }     // RUN-TEST/IDLE
   
   // START RUNNING WITH 1.58 MILLION CLOCKS (MINIMUM)
   Loop 1580000 {
      V { all = XP 0 0 1P1; }  // RUN-TEST/IDLE
   }
   
   // LOAD INSTRUCTION 'BIST_RESULTS' = CE
   V { all = XP 0 1 1P1; }     // SELECT-DR-SCA
   V { all = XP 0 1 1P1; }     // SELECT-IR-SCA
   V { all = XP 0 0 1P1; }     // CAPTURE-IR
   V { all = XP 0 0 1P1; }     // SHIFT-IR
   V { all = HP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 1 0 1P1; }     // SHIFT-IR
   V { all = HP 1 0 1P1; }     // SHIFT-IR
   V { all = HP 1 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 0 0 1P1; }     // SHIFT-IR
   V { all = LP 1 0 1P1; }     // SHIFT-IR
   V { all = LP 1 1 1P1; }     // EXIT1-IR
   V { all = XP 0 1 1P1; }     // UPDATE-IR
   V { all = XP 0 0 1P1; }     // RUN-TEST/IDLE
      
   // UNLOAD THE SCAN CHAIN
   Call scan { so = AAA24600418956A000664215012AAAA; }
} // Pattern
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Figure 14—IEEE Std 1149.1-1990 scan (continued)
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Notes for Figure 14:

NOTE 1—The reset procedure is used to reset the TAP controller Finite State Machine (FSM).

NOTE 2—The scan procedure is used to precondition (load) the scan chain, and to observe (unload) the scan chain. The
procedure first puts the device in the scan state (SHIFT-DR).The unique concept illustrated in this example is how extra
scan data can be applied outside of the Shift block. STIL allows the special scan substitute character (#) to be used in
pre-shift and/or post-shift vectors. Pre-shift vector(s) containing # substitutions consume the first (left-most) state(s).
Post-shift vector(s) containing # substitutions consume the last (right-most) state(s). All remaining scan data states are
applied in the Shift block. Therefore, this example shows that the last state (62) is applied in the Vector following the
Shift block, and all remaining states (1 - 61) are applied in the Shift vector. Note also that the last state is applied when
TMS transitions to complete the scan state (EXIT1-DR). The procedure then returns the device to the run-test/idle state. 

NOTE 3—This example is a simple case of a single pattern contained in a Patlist. The PatternBurst only contains the
Patlist block, because global signal groups are used and no special overrides are required. Similarly, the PatternExec
only contains the PatternBurst name because global timings are used.

NOTE 4—The BIST pattern begins by defining the waveform table to use, and then calling the reset procedure to initial-
ize the device’s FSM.

NOTE 5—This is an example of loading an instruction into the TAP controller. Note that all pins are defined in each vec-
tor. Although this is not required, it improves the clarity of both the example and the state transitions of the TAP
controller.

NOTE 6—Other instruction loads were removed to limit this example size. 

NOTE 7—The scan procedure is called with just load data. Therefore, because the TDO will have no data to substitute,
the last defined waveform character (X) will be applied. Since the scan length was defined as 62 in the SignalGroup, and
the base is hex with two possible waveform characters, then 16 hex characters are required to encode the 62 states (plus
two unused hex bits). Also note that the signal group “si” is used to define the waveform characters, but the waveforms
are defined using the corresponding signal “TDI” in the Timing block.

NOTE 8—This illustrates a vector repeat with a Vector count of 1 and a Repeat of 1580000.

NOTE 9—The BIST pattern completes by unloading the scan chain. TDI has no data to substitute, so the last defined
Waveform character (0) is used. Since the scan length was defined as 62 in the SignalGroup, and the base is hex with
three possible waveform characters, then 31 hex characters are required to encode the 62 states in two-bit hex. Also note
that the signal group “so” is used to define the waveform characters, but the waveforms are defined using the correspond-
ing signal “TDO” in the Timing block. 

5.7 Multiple data elements per test cycle

One of the features of STIL is the ability to present more than one bit of data per test cycle. These constructs
differ from the scan constructs presented in the previous example, although some situations may be able to
use either of these constructs effectively to represent test data.

There are two differing needs for naturally representing multiple-bit data values in STIL: pipelined data and
serial data streams. The following examples for these two cases demonstrate the STIL structures for support-
ing this data.
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5.7.1 Burst or pipelined data

Figure 15 describes a 64-bit data bus executing a burst read cycle containing four words. 

Note that the entire burst (all four reads) have been mapped into a single tester cycle.

As a pattern implementation within STIL, it is natural to specify the bus data as four sets of 64-bit hex val-
ues. The content of each of the words is presented in a format designed to preserve intent. The code in
Figure 16 demonstrates the constructs in STIL necessary to support this representation. This example is par-
tial, to emphasize multiple data elements only.

T0 T0
word0 word1 word2 word3DataBus 

AAAA
AAAA
AAAA
AAAA

5555
5555
5555
5555

F0F0
F0F0
F0F0
F0F0

A5F0
A5F0
A5F0
A5F0

(first 16 bits)
(next 16 bits)

.

.

.

 Figure 15—Burst or pipelined data bus

SignalGroups {
    dburst = ’D[63 .. 00]’ { DataBitCount 256; Base Hex 01;}
    }
WaveformTable Func {
    Waveforms {
        dburst { 01 {
            ’5ns’  D/U [0];    // use 0th data bit
            ’10ns’ D/U [1];    // use 1st data bit
            ’15ns’ D/U [2];    // use 2nd data bit
            ’20ns’ D/U [3];    // use 3rd data bit
            } }
        }
    }
Pattern {
    W Func;
    V { dburst { AAAAAAAAAAAAAAAA; 5555555555555555; F0F0F0F0F0F0F0F0;

  A5F0A5F0A5F0A5F0; } }
    }

1

2

3

 Figure 16—STIL code to support pipelined data

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.

SignalGroups {
   dburst = ’D[63 .. 00]’ { DataBitCount 256; Base Hex 01;}
   }
WaveformTable Func {
   Waveforms {
       dburst { 01 {
           ’5ns’  D/U [0];    // use 0th data bit
           ’10ns’ D/U [1];    // use 1st data bit
           ’15ns’ D/U [2];    // use 2nd data bit
           ’20ns’ D/U [3];    // use 3rd data bit
           } }
       }
   }
Pattern {
   W Func;
   V { dburst { AAAAAAAAAAAAAAAA; 5555555555555555; F0F0F0F0F0F0F0F0;

  A5F0A5F0A5F0A5F0; } }
   }

1

2

3

SignalGroups {
    dburst = ’D[63 .. 00]’ { DataBitCount 256; Base Hex 01;}
    }
WaveformTable Func {
    Waveforms {
        dburst { 01 {
            ’5ns’  D/U [0];    // use 0th data bit
            ’10ns’ D/U [1];    // use 1st data bit
            ’15ns’ D/U [2];    // use 2nd data bit
            ’20ns’ D/U [3];    // use 3rd data bit
            } }
        }
    }
Pattern {
    W Func;
    V { dburst { AAAAAAAAAAAAAAAA; 5555555555555555; F0F0F0F0F0F0F0F0;

  A5F0A5F0A5F0A5F0; } }
    }

1

2

3

SignalGroups {
    dburst = ’D[63 .. 00]’ { DataBitCount 256; Base Hex 01;}
    }
WaveformTable Func {
    Waveforms {
        dburst { 01 {
            ’5ns’  D/U [0];    // use 0th data bit
            ’10ns’ D/U [1];    // use 1st data bit
            ’15ns’ D/U [2];    // use 2nd data bit
            ’20ns’ D/U [3];    // use 3rd data bit
            } }
        }
    }
Pattern {
    W Func;
    V { dburst { AAAAAAAAAAAAAAAA; 5555555555555555; F0F0F0F0F0F0F0F0;

  A5F0A5F0A5F0A5F0; } }
    }

1

2

3
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Notes for Figure 16:

NOTE 1—A special group must be defined to support referencing multiple-bit data. This group must have a
DataBitCount attribute defined with it; the number of bits will be the total number of expanded WaveformChars that
will be present when this group is used in a Vector.

NOTE 2—The waveform definition for each multiple-bit signal contains a square-bracketed integer as part of the timed
event data. The integer inside the square brackets defines which data bit to apply for that timed event. It is not a require-
ment to use the same group name in the waveform; the definition above could have used the signal expression
’D[63 .. 0]’ in the waveform definition instead of the group “dburst.” However, it is a requirement that all
WaveformChars to be applied under the context of a multiple-bit environment be defined collectively in a single wave-
form definition.

NOTE 3—Finally, the Vector is defined with a reference to the multiple-bit group “dburst.” In this representation, the
data to be applied to “dburst” is specified inside braces. The data is collected across all signals defined in the group. Each
set of data across all signals is defined in a separate STIL statement, terminated by a semicolon. There must be the same
number of statements (sets of data) as there are indexed numbers in the waveform definition, and the total number of
WaveformChars represented in this data must match the specified DataBitCount attribute of the group.

5.7.2 Serial data

An alternate representation is also supported in STIL to present serial or stream data. This format is similar
to scan data in concept, but is defined as a single Vector rather than a sequence of Vectors.

Consider the above representation (Figure 17) of a serial data stream being driven onto a serial port RXD
pin. The natural way to represent this data in the Vectors block is as serial bit or hex data, as shown in
Figure 18.

T0 T0

rxd 
start d0 d1 d2 d3 d4 d5 d6 d7 par stop

0 0 1 1 0 1 0 1 0

 Figure 17—Serial data
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NOTE (Figure 18)—The same requirements apply to the group and waveform definitions as previously presented. The
difference here is that instead of applying data to the group through a STIL statement with braces, the data is directly
defined. Each bit of the data in linear fashion is applied to the next indexed timed event in the waveform.

If several signals are defined in the multiple-bit group, in this notation, all indexed data associated with the first signal
defined in the group would be applied first, then all indexed data associated with the second signal, until all the data was
applied. This differs from the Pipelined Data approach in that with the Pipelined approach, all data to be applied to the
first index value (not signal) is defined in the first statement.

5.7.3 Multiple bit restrictions

Valid multiple-bit data has the following semantic constraints:

First, the signal expression used in the Vector statement must reference a group that identifies a DataBit-
Count attribute for data to be applied when this group is used. The DataBitCount attribute must be an inte-
gral multiple of the number of signals defined in the group.

Second, vectors for multiple-bit signals must equate to WaveformChars, which define multiple-bit timing
events.

Third, these constructs can only be used when all WaveformChars referenced for a particular signal are
defined in a single waveform definition. In other words, the WaveformChar references in an assignment can-
not mix single-bit and multiple-bit waveform definitions in the same reference.

STIL 0.0;
Signals {
    RXDSIG In;
    }
SignalGroups {
    rxd=’RXDSIG’ { DataBitCount 9; Alignment MSB; Base Hex 01; }
    }
Timing blk1 { WaveformTable wft1 {
    Waveforms {
        rxd { 01 {
            ’5ns’ D;      ’10ns’ D/U[0];
            ’15ns’ D/U[1]; ’20ns’ D/U[2];
            ’25ns’ D/U[3]; ’30ns’ D/U[4];
            ’35ns’ D/U[5]; ’40ns’ D/U[6];
            ’45ns’ D/U[7]; ’50ns’ D/U[8];
            ’55ns’ U;
            } }
        }
}    }
Pattern one {
    W wft1;
    V { rxd = \w001101010; }
    V { rxd = 350; }
    }

1

 Figure 18—STIL code to support serial data

The number in the circle (e.g., ①) corresponds to 
the figure note that follows.
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5.8 Pattern reuse/direct access test

5.8.1 Background

This example demonstrates mechanisms in STIL that can support the reuse of pattern files between several
designs that use common functional blocks, modules, megacells, cores, etc. Specifically, one strategy for
support of the Direct Access Test (DAT) Design For Test (DFT) concept in STIL is demonstrated. 

For this example, the design approach defines a 32-bit DAT bus at the full chip level. While in DAT test
mode, the modules within the design map their module level internal input/output (I/O) signals onto any
convenient sub-set of the DAT bus. Note that from one design to the next, a given module's signals may map
onto different lines within the 32-bit DAT bus. Few standard cell modules will use all 32-bits of the DAT
bus. In this example, the design standard cell library provides a counter module and a Direct Memory Access
(DMA) controller module, and the DAT bus is wired to a portion of the design's external databus. Figure 19
shows the configuration used for this example.

The goal, as demonstrated by this example, is to have a library of completely static tests, or patterns, for each
standard cell module. These “golden” pattern source files must not require customization from one design to
the next.

The example begins with two of the golden patterns: one for the DMA controller module, and one for the
counter module. Each pattern is in its own file in the golden patterns directory. Note that these patterns refer-
ence only the signals for their respective modules, and that within the pattern files there are no Signals or
SignalGroups blocks. The Signals and SignalGroups block declarations only exist in the design-specific
STIL files and map the DAT module test signal references to the actual design’s primary I/O signals. 

Note that the timing blocks have been left out of this example because their content is unimportant.

The DMA_1 and CNTR_1 STIL files contain Vectors for testing their respective modules in the standard cell
library. Signal data assignments are made only to signals on the internal and external boundaries of the
given module. 
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Note that Figure 19, Figure 20, and Figure 21 are only code fragments to represent the data present in those
files. As separate STIL files, however, they must have a STIL version statement as the first statement.
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 Figure 19—Design configuration

 STIL 1.0;
 Ann {* Pattern DMA_1 include file *}
 V { foobar=u; bar=x; clk=d; rst=d; portin=FF; }
 V { foobar=d; }
 V { rst=u; bar=l; portout=08; }

...

 Figure 20—DMA_1.stil

 STIL 1.0;
 Ann {* Pattern CNTR_1 include file *}

 V { xyzzy=w; plugh=0; ping=x; rst=q; }
 V { plugh=5; rst=Q; ping=l; }
 V { xyzzy=d; plugh=7; }
...

 Figure 21—CNTR_1.stil
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The Q1044.stil file is particular to the Q1044 design. This file contains the design-specific primary I/O Sig-
nals and SignalGroups. Also included are domained (named) SignalGroups for the modules in the design
that are tested through the DAT bus. For each DAT-tested module, the module-specific signals are mapped
onto the primary I/Os.

STIL 1.0;
// Main file for the Q1044 design

Signals { // Defines the primary I/Os for this design
 reset  In ;

clock  In ;
DB[31..00] InOut;

... // other signals deleted
}

SignalGroups { // Global groups declaration
 DBus = ’DB[31..00]’ {Base Hex x;}

// Used in the initial vector in each pattern
}

SignalGroups DMA { // DMA DAT pattern signal reference map to the
// actual I/Os for this design.

foobar = ’DB[22]’;
bar  = ’DB[17]’;
clk  = ’DB[20]’;
rst  = ’DB[21]’;
portin = ’DB[23]+DB[19..18]+DB[16..13]+DB[10]’{Base Hex du;}
portout= ’DB[23]+DB[19]+DB[18]+DB[16]+DB[15]+

DB[14]+DB[13]+DB[10]’{Base Hex LH;}
}

SignalGroups CNTR { // Counter DAT pattern signal reference map to
// the actual I/Os for this design.

 xyzzy = ’DB[17]’;
 plugh = ’DB[22]+DB[21]+DB[19]’ {Base Hex du;}
 ping  = ’DB[14]’;
 rst  = ’DB[13]’;
}

1

 Figure 22—Q1044.stil

The number in the circle (e.g., ①) corresponds 
to the figure note that follows.
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NOTE (Figure 22)—The group definition of DBus to a single WaveformChar. Because there is only one WaveformChar
in the list, the hex data must be all zero values to reference this WaveformChar. This is the diminutive case for hex map-
ping; that is, providing a single value because only a single WaveformChar is referenced in the definition.

Design-specific versions of the DMA_1 and CNTR_1 patterns are created by providing a pattern that sets
the state of all primary I/O signals, and then includes the golden PatternSet.

Files ../golden_patternsets/DMA_1.stil and ../golden_patternsets/CNTR_1.stil contain only V (Vector)
statements.

It is within the PatternBurst block that the signal names used within the golden patterns are formally affili-
ated with the actual primary I/Os of the design. This affiliation is accomplished by selecting a domained Sig-
nalGroup. In the PatternBurst of Figure 22, the Q1044_CNTR_1 pattern is selected (which includes the
golden pattern CNTR_1.stil) and the CNTR SignalGroup is selected for resolving the signal references
within the golden pattern.

 
PatternBurst CNTR_Patterns {
 SignalGroups CNTR;
 PatList {

  Q1044_CNTR_1; // Only CNTR_1 is shown in this example
  Q1044_CNTR_2;
  Q1044_CNTR_3;
...}
}

PatternBurst DMA_Patterns {
 PatList {

   Q1044_DMA_1 { SignalGroups DMA; }
  Q1044_DMA_2 { SignalGroups DMA; }
  Q1044_DMA_3 { SignalGroups DMA; }
...}
}

PatternBurst All_Patterns { PatList { DMA_Patterns; CNTR_Patterns; }

PatternExec AllPats {
 Timing Global_Timing;// Not defined in this example
 PatternBurst All_Patterns;
}

Pattern Q1044_DMA_1 {
 V { reset=r; clock=r; DBus=\R x;... }
 Include “../golden_patternsets/DMA_1.stil”;

}

Pattern Q1044_CNTR_1 {
 V { reset=r; clock=r; DBus=\R x;... }
 Include “../golden_patternsets/CNTR_1.stil”;

}

Figure 22—Q1044.stil (continued)
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The DMA PatternBurst demonstrates an alternative method for affiliating the SignalGroups with the golden
patterns by using a hierarchical PatternBurst. The benefit is that the SignalGroup is only listed once. Both
techniques are equivalent.

This PatternExec defines an executable set of patterns with associated timing. If the timing needs between
the DMA and CNTR patterns differ, and an overlapping set of pattern data characters are used, then separate
PatternExec blocks must be defined which reference different Timing blocks.

5.9 Event data/non-cyclized STIL information

While it is not a primary format for data presentation, STIL may be used to contain event data in the Pattern
block. Event data in the Pattern block has not been cyclized and, therefore, this format is not meant to be
used directly for test without additional processing. This capability is meant to be used only to provide addi-
tional data for consistency-checking, or to be used by tools designed to cyclize.

This subclause contains three examples that demonstrate one methodology for resolving event data into
tester stimulus. The LS245 design of Annex E is used for the context of the information presented here.

5.9.1 Pure event data

The stimulus presented in Figure 23 defines the input stimulus to a LS245 design. Figure 24 defines both the
input stimulus and the output response to this stimulus. Note this response includes references to two inter-
nal signals of the design, busBEN and busAEN. These signals will be used to define the direction of the A
and B busses in subsequent processing.

The stimulus, while appearing to be relatively free-form, is designed to be cyclized. This will be explored in
5.9.2 and 5.9.3.

/* signals in column 
order:
     DOAAAAAAAABBBBBBBB
     IE0123456701234567
     R_
first column is time in 
ns.
 */
0    11ZZZZZZZZZZZZZZZZ
1000 1110101010ZZZZZZZZ
1200 1010101010ZZZZZZZZ
1300 1110101010ZZZZZZZZ
1500 1101010101ZZZZZZZZ
1700 1001010101ZZZZZZZZ
1800 1101010101ZZZZZZZZ
2000 01ZZZZZZZZ01010101
2200 00ZZZZZZZZ01010101
2300 01ZZZZZZZZ01010101

 Figure 23—Stimulus used to generate STIL data
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/*                   DO AbAAAAAAABbBBBBBBB
                     IE 0u12345670u1234567
                     R_  s        s
                         B        A
                         E        E
                         N        N
               Time */
             0.00 ns 11 xxxxxxxxxxxxxxxxxx
             3.06 ns 11 x0xxxxxxxxxxxxxxxx
             3.30 ns 11 x0xxxxxxxx0xxxxxxx
             4.64 ns 11 z0zzzzzzzx0xxxxxxx
             4.88 ns 11 z0zzzzzzzz0zzzzzzz
          1000.00 ns 11 100101010z0zzzzzzz
          1200.00 ns 10 100101010z0zzzzzzz
          1206.76 ns 10 100101010z1zzzzzzz
          1258.52 ns 10 100101010z10z0z0z0
          1268.12 ns 10 100101010110101010
          1300.00 ns 11 100101010110101010
          1303.30 ns 11 100101010100101010
          1304.66 ns 11 10010101010z1z1z1z
          1304.88 ns 11 100101010z0zzzzzzz
          1500.00 ns 11 001010101z0zzzzzzz
          1700.00 ns 10 001010101z0zzzzzzz
          1706.76 ns 10 001010101z1zzzzzzz
          1758.52 ns 10 00101010101z0z0z0z
          1768.12 ns 10 001010101011010101
          1800.00 ns 11 001010101011010101
          1803.30 ns 11 001010101001010101
          1804.66 ns 11 001010101z01z1z1z1
          1804.88 ns 11 001010101z0zzzzzzz
          2000.00 ns 01 z0zzzzzzz001010101
          2200.00 ns 00 z0zzzzzzz001010101
          2206.76 ns 00 z1zzzzzzz001010101
          2258.52 ns 00 01z0z0z0z001010101
          2268.12 ns 00 011010101001010101
          2300.00 ns 01 011010101001010101
          2303.30 ns 01 001010101001010101
          2304.66 ns 01 z01z1z1z1001010101
          2304.88 ns 01 z0zzzzzzz001010101
          2500.00 ns 01 z0zzzzzzz100101010
          2700.00 ns 00 z0zzzzzzz100101010
          2706.76 ns 00 z1zzzzzzz100101010
          2758.52 ns 00 z10z0z0z0100101010
          2768.12 ns 00 110101010100101010
          2800.00 ns 01 110101010100101010
          2803.30 ns 01 100101010100101010
          2804.66 ns 01 10z1z1z1z100101010
          2804.88 ns 01 z0zzzzzzz100101010
          3000.00 ns 01 z0zzzzzzzz0zzzzzzz

 Figure 24—Stimulus and response data for the LS245



IEEE
FOR DIGITAL TEST VECTOR DATA Std 1450-1999

Copyright © 1999 IEEE. All rights reserved. 47

STIL 1.0;
Signals { DIR In; OE_ In; A0 InOut; A1 InOut; A2 InOut; A3 InOut;
 A4 InOut; A5 InOut; A6 InOut; A7 InOut; B0 InOut; B1 InOut;
 B2 InOut; B3 InOut; B4 InOut; B5 InOut; B6 InOut; B7 InOut;
 busAEN Pseudo; busBEN Pseudo; }
Pattern “basic_functional” { TimeUnits ’10ps’;
 V {
@ 0      { DIR=U;OE_=U;A0=?;A1=?;A2=?;A3=?;A4=?;A5=?;A6=?;A7=?;
           B0=?;B1=?;B2=?;B3=?;B4=?;B5=?;B6=?;B7=?;}
@ 306    { busBEN=A;}
@ 330    { busAEN=A;}
@ 464    { A0=F; A1=F; A2=F; A3=F; A4=F; A5=F; A6=F; A7=F;}
@ 488    { B0=F; B1=F; B2=F; B3=F; B4=F; B5=F; B6=F; B7=F;}
@ 100000 { A0=B; A1=A; A2=B; A3=A; A4=B; A5=A; A6=B; A7=A;}
@ 120000 { OE_=D;}
@ 120676 { busAEN=B;}
@ 125852 { B1=A; B3=A; B5=A; B7=A;}
@ 126812 { B0=B; B2=B; B4=B; B6=B;}
@ 130000 { OE_=U;}
@ 130330 { busAEN=A;}
@ 130466 { B1=F; B3=F; B5=F; B7=F;}
@ 130488 { B0=F; B2=F; B4=F; B6=F;}
@ 150000 { A0=A; A1=B; A2=A; A3=B; A4=A; A5=B; A6=A; A7=B;}
@ 170000 { OE_=D;}
@ 170676 { busAEN=B;}
@ 175852 { B0=A; B2=A; B4=A; B6=A;}
@ 176812 { B1=B; B3=B; B5=B; B7=B;}
@ 180000 { OE_=U;}
@ 180330 { busAEN=A;}
@ 180466 { B0=F; B2=F; B4=F; B6=F;}
@ 180488 { B1=F; B3=F; B5=F; B7=F;}
@ 200000 { DIR=D; A0=F; A1=F; A2=F; A3=F; A4=F; A5=F; A6=F; A7=F;
           B0=A; B1=B; B2=A; B3=B; B4=A; B5=B; B6=A; B7=B;}
@ 220000 { OE_=D;}
@ 220676 { busBEN=B;}
@ 225852 { A0=A; A2=A; A4=A; A6=A;}
@ 226812 { A1=B; A3=B; A5=B; A7=B;}
@ 230000 { OE_=U;}
@ 230330 { busBEN=A;}
@ 230466 { A0=F; A2=F; A4=F; A6=F;}
@ 230488 { A1=F; A3=F; A5=F; A7=F;}
@ 250000 { B0=B; B1=A; B2=B; B3=A; B4=B; B5=A; B6=B; B7=A;}
@ 270000 { OE_=D;}
@ 270676 { busBEN=B;} @ 275852 { A1=A; A3=A; A5=A; A7=A;}
@ 276812 { A0=B; A2=B; A4=B; A6=B;} @ 280000 { OE_=U;}
@ 280330 { busBEN=A;} @ 280466 { A1=F; A3=F; A5=F; A7=F;}
@ 280488 { A0=F; A2=F; A4=F; A6=F;}
@ 300000 { B0=F; B1=F; B2=F; B3=F; B4=F; B5=F; B6=F; B7=F;}
} //end V } //end Pattern

1
2

3

 Figure 25—LS245 event data

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.
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Notes for Figure 25:

NOTE 1—Pseudo signals are specified in this example to provide information about the “enable” state of the bidirec-
tional busses in the design. This information may be used to assist subsequent tools in determining the state of the test
equipment (i.e., which drivers are turned on in which test Vectors). These signals are internal to the design. (Refer to the
design description in Annex E to identify these signals.) The response data in Figure 24 includes information on the state
of these signals.

NOTE 2—The TimeUnits statement defines the interpretation of all subsequent event statements in this Vector block.
All time values in this context are integer, scaled to the value specified in this statement.

NOTE 3—This is an example of “Big Bang” timing. It is comprised of non-cyclized data, which defines Vectors as
events at a timing offset (@time {signal = event;}) versus cyclized data, which defines Vectors as WaveFormChars for a
Signalref (signalref = wfcs;). 

It contains a single Vector and, therefore, all events in this Vector are relative to “time zero,” the start of the simulation
run. Because only one period is defined (the period of the entire sequence), there is no need for WaveformTables in this
representation.

In this example, the input signals DIR and OE_ are specified using Driver state values (U,D), while the Pseudo signals
and InOuts are specified using Unknown direction state values (A,B,F,?). In this example, there is no notion of “direc-
tion” on the bidirectional signals in the design; they are simply given values to represent the state information.

STIL supports integer values not exceeding 232-1. If time values exceed this amount, then the Pattern must contain mul-
tiple Vectors. Each set of events is then relative to the enclosing Vector statement. If multiple Vectors are defined, each
Vector must reference a WaveformTable to define the Period of that Vector. Subclause 5.9.2 demonstrates events in the
context of multiple Vectors.

5.9.2 Mixed event and pattern data in STIL

This example is a continuation of the previous example. In this example, all input data has been cyclized rel-
ative to a 500 ns period. The output events, however, including events on the bidirectional signals when in
output mode, are still left as events. Time values specified in the Event data are reset relative to each new
Vector. Also, direction is now known (in this example) on the bidirectional signals; therefore, the event data
is changed to represent input or output events. In other words, states are no longer applied from the
Unknown Direction set {A B F ?}; now they are {U D N Z} for input direction, and {L/l H/h X T/t} for out-
put direction.



IEEE
FOR DIGITAL TEST VECTOR DATA Std 1450-1999

Copyright © 1999 IEEE. All rights reserved. 49

STIL 1.0;

Signals {
 DIR In; OE_ In;
 A0 InOut; A1 InOut; A2 InOut; A3 InOut;
 A4 InOut; A5 InOut; A6 InOut; A7 InOut;
 B0 InOut; B1 InOut; B2 InOut; B3 InOut;
 B4 InOut; B5 InOut; B6 InOut; B7 InOut;
 busAEN Pseudo; busBEN Pseudo;
 }

SignalGroups {
    Abus_in  = ’A0+A1+A2+A3+A4+A5+A6+A7’ { Base Hex du; }
    Bbus_in  = ’B0+B1+B2+B3+B4+B5+B6+B7’ { Base Hex du; }
    Abus_out = ’A0+A1+A2+A3+A4+A5+A6+A7’ { Base Hex z; }
    Bbus_out = ’B0+B1+B2+B3+B4+B5+B6+B7’ { Base Hex z; }
    }

Timing “basic_functional” {
    WaveformTable one {
         Period ’500ns’;
         Waveforms {
             DIR     { ud { ’0ns’ U/D; }}
             OE_     { ud { ’0ns’ U; ’200ns’ U/D; ’300ns’ U; }}
             Abus_in { ud { ’0ns’ U/D; }}
             Bbus_in { ud { ’0ns’ U/D; }}
             Abus_out{ z  { ’0ns’ Z; }}
             Bbus_out{ z  { ’0ns’ Z; }}
         }          // end Waveforms
    }               // end WaveformTable one
}                   // end Timing “basic_functional”

PatternBurst basic {
PatList { “basic_functional”; }

} //end PatternBurst “basic_functional”

PatternExec {
Timing “basic_functional”;
PatternBurst basic;

} //end PatternExec

1

2

 Figure 26—LS245 mixed event and cyclized data

The numbers in the circles (e.g., ①) correspond 
to the figure notes that follow.
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Pattern “basic_functional” {
 TimeUnits ’10ps’;
 W one;
V { DIR=u; OE_=u; Abus_out=00; Bbus_out=00;
@ 0      { A0=X; A1=X; A2=X; A3=X; A4=X; A5=X; A6=X; A7=X;
           B0=X; B1=X; B2=X; B3=X; B4=X; B5=X; B6=X; B7=X;}
@ 306    { busBEN=A;}
@ 330    { busAEN=A;}
@ 464    { A0=t; A1=t; A2=t; A3=t; A4=t; A5=t; A6=t; A7=t;}
@ 488    { B0=t; B1=t; B2=t; B3=t; B4=t; B5=t; B6=t; B7=t;}
  }
V {}
V { OE_=d; Abus_in=AA;
@ 20676  { busAEN=B;}
@ 25852  { B1=l; B3=l; B5=l; B7=l;}
@ 26812  { B0=h; B2=h; B4=h; B6=h;}
@ 30330  { busAEN=A;}
@ 30466  { B1=t; B3=t; B5=t; B7=t;}
@ 30488  { B0=t; B2=t; B4=t; B6=t;}
  }
V { Abus_in=55;
@ 20676  { busAEN=B;}
@ 25852  { B0=l; B2=l; B4=l; B6=l;}
@ 26812  { B1=h; B3=h; B5=h; B7=h;}
@ 30330  { busAEN=A;}
@ 30466  { B0=t; B2=t; B4=t; B6=t;}
@ 30488  { B1=t; B3=t; B5=t; B7=t;}
  }
V { DIR=d; Abus_out=00; Bbus_in=55;
@ 20676  { busBEN=B;}
@ 25852  { A0=l; A2=l; A4=l; A6=l;}
@ 26812  { A1=h; A3=h; A5=h; A7=h;}
@ 30330  { busBEN=A;}
@ 30466  { A0=t; A2=t; A4=t; A6=t;}
@ 30488  { A1=t; A3=t; A5=t; A7=t;}
  }
V { Bbus_in=AA;
@ 20676  { busBEN=B;}
@ 25852  { A1=l; A3=l; A5=l; A7=l;}
@ 26812  { A0=h; A2=h; A4=h; A6=h;}
@ 30330  { busBEN=A;}
@ 30466  { A1=t; A3=t; A5=t; A7=t;}
@ 30488  { A0=t; A2=t; A4=t; A6=t;}
  }
}                    //end Pattern

3

Figure 26—LS245 mixed event and cyclized data (continued)
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Notes for Figure 26:

NOTE 1—This example defines four SignalGroups: two for bus-input states, and two for bus-output states. Because out-
put information has not yet been defined, the output waveforms are defined only to turn the tester driver off (in this
example, at T0 in a Vector). Because these are two separate sets of groups for input and output states, the proper group
reference must be made in the Vectors to get the expected operation.

When the output groups are used, the hex data must be all zero values to reference the single waveform defined in hex
mode. This is the diminutive case for hex mapping; that is, providing a single value because only a single WaveformChar
is referenced in the definition. Even though only a single bit is defined, each driver must have its own bit of data, and the
eight signals of the group still require two hex characters (of zero values) to represent the state for all signals.

NOTE 2—The Timing block defines one WaveformTable, which is then explicitly referenced in the Pattern. In this
WaveformTable, waveforms are defined using the WaveformChars “u” and “d” for all input states. For the DIR signal,
and the Abus or Bbus signals when being driven as an input, “u” and “d” directly map to the Drive states U and D, which
are asserted at the start of the Vector (“T0”). Note that even though the characters are similar, “u” and “d” are aliases that
reference waveforms, not drive states themselves. The OE_ signal is defined as a low-going pulse, but it also is defined
with the WaveformChars “u” and “d”. When “u” is applied in the Vectors, the OE_ signal is held high; when “d” is
applied, a low-going pulse is generated on the OE_ signal.

NOTE 3—The Vectors in this data are relative to the 500 ns period defined in the WaveformTable. Therefore, the time
value for each event is reset relative to the start of the current Vector.

T0

D U UD

500ns 500ns 500ns

D U D

DIR

OE_

Abus
Z (input data) Z

Bbus
(input data) Z (input data)

U U U

Figure 27—Cyclized input data from the events
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5.9.3 Fully cyclized data

This is a continuation of the previous example. This example is tester-compatible; all data is provided
through the application of waveforms defined in the Timing block.

In this example, there are no longer any references to pseudo signals in the Vector (although the definitions
are still provided). The output bus SignalGroups have changed; now there are four waveforms specified in
the output groups. This requires two bits to represent each signal in hex when these groups are used, which
now requires four hex characters to represent the state of the eight signals in the group. The mapping of the
two bits is shown in Figure 28.

WFC:
Bit Value:

l
00

h
01

z
10

x
11

(Bit Value is defined by the Group mapping for lhzx)

 Strobe for: Low (0) High (1) float-state (Z) X

Figure 28—Output values of the bidirectional buses
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STIL 1.0;

Signals {
    DIR In;
    OE_ In;
    A0 InOut; A1 InOut; A2 InOut; A3 InOut;
    A4 InOut; A5 InOut; A6 InOut; A7 InOut;
    B0 InOut; B1 InOut; B2 InOut; B3 InOut;
    B4 InOut; B5 InOut; B6 InOut; B7 InOut;
    busAEN Pseudo;
    busBEN Pseudo;
    }

SignalGroups {
    Abus_in  = ’A0+A1+A2+A3+A4+A5+A6+A7’ { Base Hex du; }
    Bbus_in  = ’B0+B1+B2+B3+B4+B5+B6+B7’ { Base Hex du; }
    Abus_out = ’A0+A1+A2+A3+A4+A5+A6+A7’ { Base Hex lhzx; }
    Bbus_out = ’B0+B1+B2+B3+B4+B5+B6+B7’ { Base Hex lhzx; }
    }

Timing “basic_functional” {

    WaveformTable one {
         Period ’500ns’;
         Waveforms {
             DIR     { ud   { ’0ns’ U/D; }}
             OE_     { ud   { ’0ns’ U; ’200ns’ U/D; ’300ns’ U; }}
             Abus_in { ud   { ’0ns’ U/D; }}
             Bbus_in { ud   { ’0ns’ U/D; }}
             Abus_out{ hlzx {’0ns’Z;’0ns’X;’220ns’ h/l/t/X;’280ns’ X;}}
             Bbus_out{ hlzx {’0ns’Z;’0ns’X;’220ns’ h/l/t/X;’280ns’ X;}}
         }          // end Waveforms
    }               // end WaveformTable one
}                   // end Timing “basic_functional”

PatternBurst basic {
PatList { “basic_functional”; }

} //end PatternBurst “basic_functional”

PatternExec {
Timing “basic_functional”;
PatternBurst basic;

} //end PatternExec

1

Figure 29—LS245 fully cyclized data
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NOTE (Figure 29)—Notice that the order of the WaveformChars in the Base statement for the group declaration of
Abus_out (lhzx) is different than the order presented in the Waveform declaration for Abus_out (hlzx). These two fields
are independent of each other, as was identified previously in Figure 7. (See NOTE 4 for Figure 7.) 

Pattern “basic_functional” {

W one;
V { DIR=u; OE_=u; Abus_out=AAAA; Bbus_out=FFFF; }

// In the Vector above, both buses are in output direction.

// Abus is being sampled for valid float-state. 
// hex A = binary 1010; Each signal gets two bits of value in order =‘1
// ‘10’ = WFC ‘z’ from the Abus_out SignalGroup definition.
// Bbus is not being sampled.
// hex F = binary 1111; Each signal gets two bits of value in order =‘1
// ‘11’ = WFC ‘x’ from the Bbus_out SignalGroup definition.

V {}
V { OE_=d; Abus_in=AA; Bbus_out=4444; }

// In the Vector above, Abus is driven A0=1,A1=0,A2=1,A3=0, etc.
// Bbus, during the sample period, will follow Abus. 
// During the sample period, B0=1 and B1=0. 
// For B0 to be ‘high’, it must have the value ‘01’ 
// from the SignalGroup order.
// For B1 to be ‘low’, it must have the value ‘00’ 
// from the SignalGroup order.
// ‘0100’ = hex value ‘4’.

V { Abus_in=55; Bbus_out=1111; }
V { DIR=d; Abus_out=1111; Bbus_in=55; }
V { Bbus_in=AA; Abus_out=4444; }

}                    //end Pattern

Figure 29—LS245 fully cyclized data (continued)
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6. STIL syntax description

This clause describes, in general, the basic syntax and semantic constructs of STIL.

6.1 Case sensitivity

STIL is case-sensitive; all tokens, including identifiers, are manipulated in a case-sensitive fashion. For
instance, “Dbus” and “dbus” are two different identifiers.

6.2 Whitespace

Whitespace in STIL is one or more of the following:

space
\t tab
\n newline character

6.3 Reserved words

All keywords are reserved for the explicit use as defined for the keyword. STIL keywords have the first char-
acter of each word in upper case, and no underscores or spaces are used. For instance, WaveformTable is a
reserved word in STIL.

Reserved words are generally the first token in a STIL statement. They are used only in the context of that
word, except for single-character reserved words, which may also appear in WaveformChar contexts. See
Clause 11 for the definition of how to extend STIL by adding additional reserved words.
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Table 1 lists the reserved words, including reserved single characters, in STIL.

Table 1—STIL reserved words

A, Alignment, Ann

B, Base, BreakPoint

Call, Category, CompareHigh, CompareHighWindow, CompareLow, CompareLowWindow, CompareUnknown, 
CompareValid, CompareValidWindow, CompareZ, CompareZWindow, Condition

DataBitCount, Date Dec, DefaultState

ExpectHigh, ExpectLow, ExpectOff

F, ForceDown, ForceOff, ForcePrior, ForceUnknown, ForceUp

G, Goto

H, Header, Hex, History

IDDQTestPoint, IfNeed, In, Include, Infinite, InheritWaveform, InheritWaveformTable, InOut

L, LogicHigh, LogicLow, LogicZ, Loop, LSB

M, Macro, MacroDefs, Marker, MatchLoop, Max, Meas, Min, MSB

N

Out

P, PatList, Pattern, PatternBurst, PatternExec, Period, Procedures, Pseudo

Q

R

ScanCells, ScanChain, ScanIn, ScanInversion, ScanLength, ScanMasterClock, ScanOut, ScanOutLength, ScanSlave-
Clock, ScanStructures, Selector, Shift, SignalGroups, Signals, Source, Spec, Start, STIL, Stop, SubWaveforms,    
Supply

T, TerminateHigh, TerminateLow, TerminateOff, TerminateUnknown, Termination, TimeUnit, Timing, Title, Typ

U, Unknown, UserFunctions, UserKeywords

V, Variable, Vector

W, Waveforms, WaveformTable

X

Z
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6.4 Reserved characters

Table 2 lists the reserved characters in STIL.

Table 2—STIL reserved characters 

Character Usage

; Semicolon is used as a statement delimiter.

{} Left and right braces are used as block delimiters.

[] Left and right square brackets are used to denote numeric indexes.

@ “At” sign is used to identify timing in vectors and waveforms.

“ “ Double quote character is used to denote literal strings.

‘ ‘ Single quote character is used to denote timing and signal expressions.

: Colon is used to terminate labels.

/ Forward slash is used to separate state characters in waveforms, and as the division operator in 
timing expressions.

// Double slash defines a comment-to-newline.

/* */ Defines a comment block.

{* *} Contains an annotation (Ann) block.

. Period separates hierarchical names in timing references, and is used to concatenate strings.

, Comma delimits list of arguments in timing expressions.

! Exclamation (NOT sign) defines scan cell inversion in scan chain definitions.

# Pound sign defines incremental parameter data replacement in macros/procedures.

% Percent sign defines fixed parameter replacement in macros/procedures.

\ Back slash delimits vector flags (used to modify vec_data).

() Parentheses reserved in timing and signal expressions.

* Multiply in timing expressions.

+ Add in timing and signal expressions.

- Subtract in timing and signal expressions.

< Less than in timing expressions.

> Greater than in timing expressions.

<= Less than or equal to in timing expressions.

>= Greater than or equal to in timing expressions.

== Equal to in timing expressions.

!= Not equal to in timing expressions.

?: Conditional selection in timing expressions.

= Assignment in: timing expressions, vector expressions, groupname expressions, spec category 
expressions, and spec variable expressions (5 contexts).
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6.5 Comments

There are two styles of comment in STIL:

// line comment line comments are terminated by newline
/* block comment */ block comments may span multiple lines

Comments may appear at any legal whitespace location and are treated as whitespace. Nested block com-
ments shall not be allowed (e.g., “/* /* */ */”), but line comments may be contained in block comments.
Comments defined using these constructs may not be preserved through STIL processes. See Clause 13 for
annotations, which are a type of comment that is preserved through processes.

6.6 Token length

Tokens are defined to be the block of text between reserved characters, or reserved characters themselves
(other than whitespace and comment delimiters). Tokens are limited to a maximum length of 1024 charac-
ters. Longer sequences of character strings may be defined by segmenting the character string into sections
and placing a period between the sections (see 6.7).

6.7 Character strings

Blocks of text containing reserved characters or STIL-defined reserved words may be passed through STIL
by double quoting the text. Signal names that contain reserved characters or match STIL-defined reserved
words, and text strings that contain whitespace, are maintained in a STIL file by enclosing the text in double
quotes. Double-quoted strings are constrained to a maximum length of 1024 characters (including quotes).
Longer character strings may be defined by partitioning the string into segments, quoting each segment, and
placing a “.” (period) between each consecutive string. Only a single period and whitespace may occur
between multiple segments of a character string. The complete character string is defined as a concatenation
of all quoted strings separated by periods. For example, the character strings “acell.” . “bpart” are internally
handled as the single character string “acell.bpart.” Be aware that handling of references in the Timing block
(Clause 18) may not eliminate the intervening period.

.. Range indication for signal expressions.

Whitespace set (space, tab, newline).

E, P, T, G, 
M, k, m, u, 
n, p, f, a

Engineering prefixes may modify SI units in timing expressions (see Table 4).

A, Cel, F, 
H, Hz, m, 
Ohm, s, W, 
V

SI units may appear in timing expressions (see Table 3).

min, max Functions may appear in timing expressions.

Table 2—STIL reserved characters  (continued)

Character Usage



IEEE
FOR DIGITAL TEST VECTOR DATA Std 1450-1999

Copyright © 1999 IEEE. All rights reserved. 59

6.8 User-defined name characteristics

There are several categories of user-defined names in STIL: signal and group references, WaveformChar ref-
erences, WaveformTable references, variable references, UserKeywords, labels, and domain names.

If a user-defined name contains STIL reserved characters or is identical to a STIL reserved word, then that
name shall be quoted in double quotes.

User-defined names shall be unique to their respective domains (as defined in Table 6).

User-defined names may be declared either unquoted or enclosed in double quotes. Once declared, all refer-
ences to that name shall use the same convention to reference that name; for instance, the name “Xyz” is
always referenced as “Xyz” (with quotes present). 

Unquoted, user-defined names have the following naming restrictions. The first character in unquoted names
shall be alphabetic or an underscore. The remaining characters may be alphanumeric or underscores. Names
that contain any other character or character sequence shall be enclosed in double-quotes.

The following Backus-Naur Form (BNF) represents these above-stated options for user-defined names:

name ::= name_segment | name “.” name_segment
name_segment ::= simple_identifier | escaped_identifier (The maximum length of a name_segment is

1024 characters.)
simple_identifier ::= letter_or_underline simple_characters
simple_characters ::= simple_characters simple_character  | (null)
letter_or_underline ::= letter | underline
simple_character ::= letter | digit | underline
letter ::= upper_case_letter | lower_case_letter
upper_case_letter ::= “A”| “B” | ... | “Z”
lower_case_letter ::= “a”| “b” | ... | “z”
underline ::= “_”
escaped_identifier ::= “““ escaped_characters”””
escaped_characters ::= escaped_characters escaped_character | escaped_character
escaped_character ::= simple_character | special_character | whitespace_character
special_character ::= !@#$%^&*()-+=|`~{[}]:;',<.>/?\
whitespace_character ::= “ “ | “\t” | “\n”

Names may not contain a double-quote character. Signal or Group names may contain square brackets, with
integer values inside, at the end of the name string. (See 6.10 for more information.)

6.9 Domain names

Certain STIL block statements support the option of a user-defined “domain name” before the opening brace
of the block statement. Domain names provide a mechanism to reference the data defined in a named block.
When a domain name is present for a SignalGroups, Procedures, MacroDefs, PatternBurst, Timing, Selector,
Pattern or ScanStructures block, that domain name shall be specified in a “reference” statement in order to
make use of the data in that block. (See Clause 16 for an example of a “reference” statement to a named
PatternBurst block inside a PatternExec block.)
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All domain names for a single type of block shall be unique; for instance, all Pattern blocks need unique
names. (See 6.16 for more information about domain names in STIL.)

6.10 Signal and group name characteristics

Signal and group names are user-defined names and follow the requirements listed previously for user-
defined names. In addition, a set of signals with a common name and a numeric index may be expressed
using a double-period ellipsis (..) operator. To use the ellipsis operator, the signal names shall be appended
with an index number in square brackets. For example, the signals referenced by the statement data[0..36]
would include the range of signals from data[0] through data[36]. If signal names are quoted (because of
characters used in the name), the quotes occur before the bracketed part of the name; for example,
“a&b”[0..7]. This defines signals “a&b”[0] through “a&b”[7]. The brackets, when present, become part of
the name reference, and the values inside the bracket are interpreted as integer values only. For example, the
signal data[0] is the same as the signal data[00], but is not the same as data00. The values may be defined in
either ascending ([0..7]) or descending ([7..0]) order. The square-bracket operation is allowed any place a
signal expression may occur. It is allowed as the name of a series of signals in a Signals block, but is not
allowed as the name of a group in the SignalGroups block.

6.11 Timing name constructs

Timing blocks allow an additional mechanism to support the importing of timing data defined in one block
into a different Timing block. The period (“.”) is used to reference specific information through hierarchical
levels of Timing information. For example, a Timing block with the name ALL, containing a Wave-
formTable with the name ONE, may be referenced in a subsequent Timing block with the statement
WaveformTable ALL.ONE; (see Clause 18 for more details on this capability).

6.12 Number characteristics

Certain fields in STIL expect a numeric value. The following types are defined:

— Integer numbers are contiguous sets of the characters 0-9 (e.g., “77”). These numbers may be pre-
ceded by a minus sign to indicate a negative value. A conforming reader shall accept any integer
number capable of being represented in a 32-bit twos complement binary value.

— Signed real numbers are contiguous sets of the characters 0-9. A decimal point may appear once in
the number (e.g., “123.456”). These numbers may be preceded by a minus sign to indicate a negative
value. The precise value of a Signed real number may round to the precision/resolution of the
machine interpreting that number.

— Exponential numbers are signed real numbers, followed by either an uppercase or lowercase “e,” and
followed by a signed decimal number for the exponent (e.g., “1.0e-9”). Exponential numbers may
not contain embedded whitespace. The precise value of an exponential number may round to the
precision/resolution of the machine interpreting that number.

— Hex numbers are contiguous sets of the characters 0-9,A-F,a-f (e.g., “HA4”). Hex numbers are
always positive.
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The following BNF representation restates these characteristics:

digit ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”
hexdigit ::= digit | “a” | “A” | “b” | “B” | “c” | “C” | “d” | “D” | “e” | “E” | “f” | “F”
hex_number ::= hexdigit | hexdigits hexdigit
integer ::= digit | integer digit
signed_integer ::= integer | “-” integer
number ::= signed_integer

| signed_integer “.” integer
| signed_integer  “e” signed_integer
| signed_integer “.” integer “e” signed_integer

6.13 Timing expressions and units (time_expr)

Timing expressions are enclosed in single quotes. Expressions consist of integers, real numbers, exponential
numbers, spec variables, event_labels, and operators. Exponential numbers may be expressed using real
numbers or exponential numbers, followed by engineering notation using the prefixes and units identified in
Table 3 and Table 4. There shall be no whitespace between the value and the engineering notation. Only sim-
ple units are allowed in STIL (e.g., 3V, 44.5mA, 22ns). Complex units like (3.5V/ns) are not allowed; how-
ever, they may be represented as a ratio of two values (3.5V/1ns). Only expressions that compute to units of
time or scientific numbers may be used in a timing expression. The following are examples of timing expres-
sions that may be used in the construction of a waveform:

‘5ns’ // 5ns
‘5.0ns’ // 5ns
‘15.0ns/3’ // 5ns
‘5.0e-9s’ // 5ns
‘1/200MHz’ // 5ns
‘txx’ // simple variable from a spec sheet or labeled event
‘txx*5’ // expression
‘txx+5ns’ // expression
‘@+5ns’ // expression relative to previous event
‘@3+5ns’ // expression relative to event 3 of current waveform
‘wft_x.tlab+3ns’ // expression relative to another WaveformTable

Table 5 specifies the operators and functions supported for timing expressions in STIL. These operators fol-
low the same precedence as equivalent operators in the C-language, with parentheses having the highest pre-
cedence. Horizontal dark lines in this table indicate operators of equal precedence; precedence decreases
going down the table. Complex statements may use parentheses.

The SI units in Table 3 are derived from ISO 2955:1983 and IEEE Std 260.1-1993.6 An engineering prefix
from Table 4, when present, shall be used in conjunction with an SI unit from Table 3.

There are two contexts where time expressions may occur. The first context is in the Spec block as part of a
spec variable definition. The second context is in the waveform block, to define the timing associated with an
event.

A time expression occurring in a waveform block supports additional constructs not supported with time
expressions in spec variable definitions. These additional constructs provide the ability to reference other
time events as part of a new time expression. There are two mechanisms defined to support referencing other
time events:

6Information on references can be found in Clause 2.
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— Use of event_labels. A waveform definition may contain event_labels, which may be referenced in
other timing expressions just like a spec variable. The time value of that labeled event is the value of
the event_label used in the time expression. References to event_labels may be resolved in different
waveform definitions in a single WaveformTable, but event labels are scoped to the current Wave-
formTable. All referenced event_labels shall be defined in the WaveformTable in which they are ref-
erenced. Inherited WaveformTables become part of the current WaveformTable; hence, they may
include labels to be referenced and label references.

— Use of ‘@’ and ‘@n’ time marks. These constructs are used to reference events in the current wave-
form definition only. The ‘@’ construct references the event previously defined (in a syntactic
sense), that is, the previous event to the left of the current definition. The ‘@n’ construct references
the nth event statement in the current waveform; ‘@1’ references the first event statement in the
waveform. These constructs may reference events yet to be defined. These constructs shall not refer-
ence an undefined event, nor reference from any path one event back to itself (circular references).

NOTE—The term time_expr is used in this standard as part of the syntax descriptions to indicate the presence of timing
expressions in statements.

Table 3—SI units

Unit Description

A Amperes

Cel Degrees Celsius

F Farads

H Henries (inductance)

Hz Hertz

m Meter

Ohm Ohms

s Seconds

W Watts

V Volts
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6.14 Signal expressions (sigref_expr)

Signal expressions define an ordered list of signals; they are either a single token, or an expression enclosed
in single quotes. Signal expression operators are plus (+), minus (-), ellipsis (..), and parentheses. These
operators are not extendable. Expressions are evaluated left-to-right, with parentheses used to override this
order. Signals referenced in signal expressions may occur only once in the sub-expressions generated during
evaluation of the expression.

A Signal expression shall not “remove” a signal (using the minus operator) that is not part of an expression
as currently defined, and an expression shall not “add” a signal (using the plus operator) that is already part
of an expression as currently defined.

For instance, if sig1, sig2, sig3, sig4, and sig5 are defined, and two groups are defined:

SignalGroups {
grp1 = ’sig3+sig2+sig1’;
grp2 = ’sig3+sig4+sig5’; }

In this example, then, it would be incorrect to define a group that combines these two groups, because sig3 is
a memeber of both groups:

grp3 = ’grp1+grp2’; //error

However, this group could be assembled by removing the repeated element first. There are two different
ways this could be done, depending on what final grouping is desired. If the desire is to keep the sig3 refer-
ence at the “end” (right-hand-side) of the final expression, then the following expression could be used:

grp3 = ’grp1-sig3+grp2’; // ’sig2+sig1+sig3+sig4+sig5’

Table 4—Engineering prefixes

Prefix Description Multiplier

E exa 1018

P peta 1015

T tera 1012

G giga 109

M mega 106

k kilo 103

m milli 10–3

u micro 10–6

n nano 10–9

p pico 10–12

f femto 10–15

a atto 10–18
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If the desire is to keep the sig3 reference in the beginning of the final expression, then parenthesis are used to
override the left-to-right evaluation:

grp3 = ’grp1+(grp2-sig3)’; //’sig3+sig2+sig1+sig4+sig5’

The ellipsis (..) operator is a shorthand notation for expressing signals as a range. The signals shall be identi-
fied as a name followed by an index number in square brackets: 

databus = ’data[0..31]’; // data[0], data[1],... data[31]
dbus2  = ’dbus2[20..1]’; // dbus2[20], dbus2[19],... dbus2[1]

NOTE—The term sigref_expr is used in this standard as part of the syntax descriptions to indicate the presence of signal
expressions in statements.

6.15 WaveformChar characteristics

WaveformChar characters are used to assign waveform information to specific signals in Vector statements.
Each signal’s WaveformChar characters are defined in Timing blocks. A WaveformChar shall be a single
alphanumeric character, from the set of characters: [0-9][a-z][A-Z].

A WaveformChar list is a list of WaveformChar characters that apply one for one with the corresponding sig-
nals of a SignalGroup. (For example, if a SignalGroup contains five Signals, then its corresponding Wave-
formChar list would contain five WaveformChar characters.) A WaveformChar list may contain whitespace,

Table 5—Operators and functions allowed in a timing expression

Op Definition

min () Minimum value

max () Maximum value

() Parentheses

Table 3, Table 4 SI units and prefixes

/ Divide

* Multiply

+ Add

– Subtract

< Less than

> Greater than

<= Less or equal

>= Greater or equal

== Equal

!= Not equal

?: Conditional expression

= Assignment
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including newlines. A complete assignment is built by reading the individual tokens into a complete assign-
ment value. For example, the following assignments are equivalent:

     group_of_10 = XXXXXXXXXX;  // 10 X's
     group_of_10 = XXXXX
                   XX X XX;     // 10 X's

A WaveformChar list may be encoded into a hexadecimal or decimal base for data compaction (see 15.4).
The default base (WaveformChar, Hex, or Dec) is determined by each Signal or SignalGroup's definition.
Vector flags (\w, \h, and \d) may be used to override the default base of assignment values. In addition,
repeated character sequences may be compacted using the \r vector flag or changed in length by the \l
(lower-case ell) (see 21.1). The following rules define the interaction of vector flags in a WaveformChar list:

— The last-specified base value (the default value, or \w, \h, or \d if the default was changed) is applied
to a WaveformChar list until another base value is specified.

— The repeat flag \r is applied to a list until terminated by the end of the expression, or by the first
whitespace after the \r and count fields.

— The length flag \l is applied to the subsequent WaveformChar list up to the end of the expression after
expansion of any \r constructs in that list.

For example, the WaveformChar list “f \r2 f\w0000 0101” would expand into (assuming the default
was Hex encoding to the WaveformChars “0” and “1”):

— The initial “f” represents the WaveformChar list “1111.”
— The \r2 sequence is applied to the whitespace-separated list “f\w0000.” This list represents the

WaveformChars “11110000,” and after the repeat, is “1111000011110000.”
— The \w (changed in middle of the previous \r expression) is still in effect for the final segment. So this

remains as “0101.”
— The entire segment would be equivalently represented as: “\w1111 1111000011110000

0101.”

Since the  \r construct is terminated by whitespace, it is not possible to define a repeat construct around a list
that specifies \h or \d options. For example, the list “\r2 \hwW f0” attempts to apply the WaveformChars ‘w’
and ‘W’ to the hex value f0. However, the whitespace required for \h also terminates the \r operation. This
situation is resolved by putting the hex flag first as follows: “\hwW \r2 f0.”

WaveformChar lists are referred to in the syntax explanations as vec_data or serial_data.

6.16 STIL name spaces and name resolution

Information defined in a block with a domain name requires a reference to that domain name to use the
information in that block. Information defined in a block without a domain name is available to be used
without an explicit reference; this information is considered “global” after it has been defined.

All information in a named domain becomes available when that name is referenced. Because most STIL
domain blocks contain only data definitions, there is no method to access a subset of domain information,
except for Timing information, which may have several levels of hierarchy and scoping mechanisms. (See
6.11 for more information.) If a subset of information is desired, then the information may be partitioned
into separate named blocks.
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Table 6 identifies STIL blocks, the type of information contained in each block, and the function of the
domain operation for that information.

There are three environments for name spaces in STIL. The first supports both unnamed (global) definitions
and domain named definitions. This environment is used for signals and groups (although the name space of
signals is global only, it is combined with group names that support this environment), procedures, macros,
and timing names. The second name space environment is global only, used for spec variables (and the sig-
nal name subset of signal and group names). The third environment is where the domain name itself serves
as the name. This environment is used by the selector, patternburst, and pattern names.

Table 6—STIL name spaces 

STIL block Type of name Domain restrictions

Signals Signal and SignalGroup 
namesa

aThe Signals block defines only signals, but the name space is shared for both groups.

Any signal defined in the Signal block is global.

SignalGroups Signal and SignalGroup 
namesb

bThe SignalGroups block defines only groups, but the name space is shared for both groups.

Supports a single unnamed global block and domain 
name (restricted) blocks.

ScanStructures Scan names and scanchain 
names

A single ScanStructures block is optionally named. Mul-
tiple ScanStructures blocks shall be uniquely named. 
ScanChain names shall be unique inside a ScanStruc-
tures block.

Procedures Procedure names Supports a single unnamed global block and domain 
name (restricted) blocks.

MacroDefs Macro names Supports a single unnamed global block and domain 
name (restricted) blocks.

Timing WaveformTable namesc

cAlso contains hierarchical data items, discussed subsequently.

Supports a single unnamed global block and domain 
name (restricted) blocks.

Timing Event_labels Event_label names shall be unique with respect to Spec 
variables, but may be multiply declared if scoped within 
Timing information.

Spec Spec names There may be multiple Spec blocks present.The names 
of all Spec blocks shall be unique.

Spec Spec variables,
Spec categories

Any Spec variable or Spec category defined in any Spec 
block is global, irrespective of the presence of an explicit 
domain name on the Spec block. 

Selector Selector names Each Selector block defines an entity. The domain name 
is required.

PatternBurst Pattern/PatternBurst 
names

Each PatternBurst or Pattern block defines an entity. The 
domain name is required, and the name space of Pattern 
and PatternBurst blocks is shared.

Pattern Pattern/PatternBurst 
names

PatternExec PatternExec names Supports a single unnamed global block and domain 
name blocks.
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The first environment requires mechanisms to resolve potential conflicts between unnamed (global) informa-
tion and names declared under a domain name. These mechanisms are as follows:

— A name defined in a SignalGroups, Timing, Procedures, and MacroDefs block with a domain name
for that block shall override any identical names of the same type defined from a block with no
domain name, when that domain name is referenced.

— It is an error to refer to a name defined in two different (domain named) blocks, even if both defini-
tions for the name are the same.

— Specifically for the SignalGroups information: it is an error to define a group name in a SignalGroups
block with no domain name, with the same name as a name defined in a Signals block. Signal names
may be overridden only from SignalGroups with domain names.

— For spec variables, it is an error to redefine a previously defined category for a spec variable.

— For selector, patternburst, and pattern name spaces: it is an error to redefine a previously defined
name. 

— It is an error to redefine a previously defined signal name, although a domain named SignalGroup
may override a named signal. In the case that a domained SignalGroup changes the definition of a
signal name, that new definition shall be reflected in all signal groups that use that name, including
groups defined in the global SignalGroup block, when that domained SignalGroup is referenced.

7. Statement structure and organization of STIL information

There are two general forms of STIL statements: simple and block statements. Both forms start with a STIL
keyword, followed by a number of tokens (depending on the statement). The simple statement is terminated
by a semicolon. The block statement contains open and close braces; additional STIL statements may occur
inside these braces. The statement forms are presented in Figure 30.

.

The remaining clauses of this standard detail each STIL keyword, the type of STIL statement used with that
keyword, and any STIL statements associated with that statement (for block statements). 

Before each statement is presented, it is important to define the overall organization of data in a STIL envi-
ronment. Subclauses 7.1 and 7.2 reference STIL keywords that are defined subsequently. For more informa-
tion about these keywords, refer to Clause 8 through Clause 24.

Keyword (OPTIONAL_TOKENS)*;

Keyword (OPTIONAL_TOKENS)* { (OPTIONAL_MORE_STATEMENTS)* }

Simple statement:

Block statement:

Figure 30—STIL statement structure
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7.1 Top-level statements and required ordering

STIL follows a “define before use” paradigm, with several exceptions discussed below. For example, the
timing data is defined before it may be referenced, and a name used to reference a group of signals defines
what signals it contains before it is used. Since all data is defined inside “top-level” blocks, these require-
ments are satisfied by properly ordering these top-level blocks.

“Top-level” blocks are blocks that occur outside the context of any other STIL statement. The first columns
of Table 7 and Table 8 list all possible “top-level” blocks and statements in STIL.

Inside some top-level blocks are “reference” statements. Reference statements are used to access data
defined in specific other top-level blocks. Reference statements use the domain name of a block being refer-
enced as the referencing mechanism; generally, all data (of whatever type is defined in that block) may be
used once a reference to that block has been defined. The exception to this is references to Timing data,
which may include mechanisms to use specific subsets of previously-defined timing (such as a specific
WaveformTable).

To satisfy the “define before use” constraint, a STIL block defining a type of information shall be present
before the reference is made to that block. The order of the first column in Table 7 is one example of an order
of blocks that satisfies this constraint.

It is not necessary to define all types of STIL data together. For instance, all the Timing blocks for a test do
not need to be defined consecutively. However, it is necessary to define each particular Timing block before
any references are made to that block from other blocks. Again, the order of data presented in Table 7 satis-
fies the most rigorous constraints of referencing in STIL. However, the only STIL requirement is that the
data be defined before it is referenced.

There are several legal (and expected) exceptions to the “define before use” paradigm. These exceptions are: 

— The pattern_domain_name, Procedures, and MacroDefs domain name references in the PatternBurst
block. The pattern_name is always a forward reference, as Pattern blocks are always last in a STIL
file; however, the Procedures and MacroDefs may or may not be forward references. 

— Any SignalGroups or Timing data referenced in a Procedures or MacroDefs block (as these refer-
ences cannot be resolved until the reference statements have been identified in the PatternBurst or
PatternExec block). 

— Any forward references to labels made in Pattern Goto statements.

Incomplete or unresolved variables or expression values are handled at run-time.
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Table 7—STIL top-level statements and ordering requirements 

 Statement Purpose

STIL Defines the version of STIL present in the file. This is the first statement of any 
STIL file, including files opened from the Include statement.

Header Contains general information about the STIL file being parsed. This block is 
optional; if present, it shall be the first statement after the STIL statement for a 
file.

Signals Defines all primary signals under test.

SignalGroups Defines collections of Signals. Requires reference to use if domain_name 
present.

ScanStructures Defines internal scan chain information. The ScanStructures block or blocks are 
optional. If there are multiple ScanStructures blocks, they must be named. The 
PatternBurst may contain a reference to a named ScanStructures block, and the 
Pattern may contain a reference to a named ScanChain inside a ScanStructures. 
These blocks shall be defined before the PatternBurst if the PatternBurst con-
tains references; otherwise, these blocks are defined before the Pattern blocks.

Spec Defines values of variables to be applied in Timing Expressions. Multiple values 
may be assigned to variables; variable values are not resolved until the Pattern-
Exec statement. 
All Spec blocks shall precede the first Timing block definition.

Timing Defines the waveforms to be applied to each signal in the test.
Timing expressions in this block may reference variables defined in Spec 
blocks, but timing variables are not resolved until the PatternExec.
Timing blocks may reference other timing blocks; those blocks shall be defined 
before they are referenced.

Selector Selects min/typ/max/meas value of variables defined in Spec. Although this ref-
erences variables defined in Spec blocks, variable values are not resolved until 
the PatternExec statement.
This block shall precede the PatternExec block.

PatternBurst Defines all Patterns to be executed collectively; any operation performed on this 
data (such as timing assignment) is performed on all Patterns referenced in this 
domain.
The domain_name_pat reference, MacroDefs reference, and Procedures refer-
ence may all be forward references. Any references to SignalGroups shall have 
those blocks defined first. This block shall precede the PatternExec block.

PatternExec Resolves timing variables and waveforms to apply with pattern references from 
PatternBursts. This block binds all information into a form to be applied to pat-
terns as they are parsed.

Procedures Defines a set of test data to be used multiple times in a Pattern; at the end of each 
execution, the state of the test before this call is restored for the next test vector.
Procedure data may be processed after a PatternBurst referencing this block is 
parsed.

MacroDefs Defines a set of test data to be used multiple times in a Pattern; at the end of each 
execution, the state of the test at the end of macro is in force.
Macro data cannot be processed until Patterns are processed; pattern context 
may affect macro processing.

Pattern Defines test data. All references shall be complete at the point pattern data is 
processed.
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7.2 Optional top-level statements

There are several statement types in STIL that do not have ordering requirements as presented in 7.1. Some
of these statements may appear any place a legal STIL statement may occur, including as top-level state-
ments. These statements are listed in Table 8.

7.3 STIL files

Each STIL file is comprised of ASCII source statements. Optionally, any STIL file may be compressed using
the GNU GZIP software, or GZIP-compatible software. Therefore, all readers shall be able to decompress a
STIL file, if required, using the GNU GUNZIP or a compatible program. Readers shall incorporate the
decompression in order to process compressed include files. See Annex C for information about obtaining
and/or integrating the GUNZIP program into readers.

8. STIL statement

The STIL statement shall be the first statement of a STIL file. The version number refers to the revision of
STIL that the writer is designed to support.

8.1 STIL syntax

STIL STIL_VERSION_NUMBER;

STIL: A statement at the beginning of each STIL file.

STIL_VERSION_NUMBER: The current version of STIL. This is used by a STIL writer to indicate the version
of STIL for which it was written. The version contains a major and minor revision number separated by a
period. This standard defines version 1.0.

8.2 STIL example

STIL 1.0;

Table 8—Optional top-level statements

 Statement Purpose

Include Opens the specified file for interpretation as a STIL file at the point the Include is 
parsed. At the end of the included file, parsing is resumed in the current file. This state-
ment may appear any place a legal STIL statement may occur after the initial STIL 
(version) statement.

UserKeywords Defines additional words as STIL keywords. The statements referencing these key-
words shall be consistent with STIL statement formats, as presented in Figure 30. This 
statement shall appear at the top level only.

UserFunctions Defines additional words as Timing Expression functions that are parsed and ignored. 
This statement shall appear at the top level only.

Ann An annotation which is a preserved comment. This statement may appear any place a 
legal STIL statement may occur after the initial STIL (version) statement.
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9. Header block

The Header block may appear only once at the beginning of a STIL file, and is used to specify data that per-
tains to the creation of the file.

9.1 Header block syntax

Header {
( Title “TITLE_STRING”; )
( Date “DATE_STRING”; )
( Source “SOURCE_STRING”; )
( History {} )
}

Header: Start of the header block.

Title: String used to identify this STIL block or file.

Date: The date the file was generated. The format of the date_string is as defined for the ctime() and asc-
time() functions in the C programming language (see ISO/IEC 9899-1990), except the date_string contains
no embedded newline (\n) or null (\0) characters and shall be enclosed in double-quotes to be processed as a
single string.

Source: A special annotation used to indicate how and/or where the file was generated.

History: A block used to contain annotations as the history of the data in the file.

9.2 Header example

Header {
Date “Tue Apr 28 12:23:48 EST 1996”;
Source “VHDL simulation on April 22, 1996”;
History {

Ann {* rev1 - 4/21/96 - made some change *}
Ann {* rev2 - 4/22/96 - made it work *}     }}

10. Include statement

The Include statement allows reference to be made to an external file.

The Include statement may occur at any point at which a legal STIL statement may be defined after the ini-
tial STIL (version) statement.

If the included file contains specific information (e.g., a complete STIL section, like Signals), then the
optional IfNeed clause may be used to indicate this. If this is indicated, and the type of information indicated
to be present in this file is not required for current processing, then the STIL parser may choose to skip pars-
ing this entire file. There is no required checking performed on the contents of the include file, or on whether
the contents match the indicated block type. If the information in the include file contains a mix of blocks, or
parse-optimization is not desired, then the block type should not be specified.
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Compressed files from GNU GZIP have a “.gz” extension. The included file reference may have “.gz” as
part of the specified file name; or if the specified file is not found, a STIL parser shall also look for that file
name with a “.gz” extension.

10.1 Include statement syntax

Include “FILE_NAME” (IfNeed <BLOCKTYPE>);

Include: Keyword for the file include statement.

FILE_NAME: The name of file to be accessed. All file names are parsed as strings, with double quotes enclos-
ing the name. The double-quotes are removed before the file is accessed, as specified from the current direc-
tory of the file that contains this include statement. This specified file is accessed from the current location of
the file containing this include statement; path information, if necessary, is provided as part of the name. Be
aware of the implications of absolute and relative path notations in the target operating environment, if STIL
files are moved into different locations. If this file is not found, the extension “.gz” is added to the file name
and a compressed format of the file is accessed.

IfNeed: An option to allow readers to override reading the file if the current processing environment may not
need the specified blocktype. This directive may not check the file for each object; it skips processing the
whole file if the specified blocktype is not needed for current processing. It is up to the generator or writer of
STIL to make sure the specified information is present in the file, and no more.

BLOCKTYPE: The allowed block types are listed in Table 7 and Table 8.

10.2 Include example

Include “../all_timing.stil”;
Include “$DESIGN_STUFF/STIL_scan.stil” IfNeed ScanStructures;

10.3 File path resolution with absolute path notation

If an Include statement defines a file reference that is complete (i.e., is specified relative a top-level directory
or contains a device name), then that name is passed directly into the operating system to locate that file. The
STIL environment may not provide any additional mechanisms or search paths for file path resolution, nor
should STIL make explicit use of any that may be present in the operating environment of the computer sys-
tem. The name specified in the Include statement is passed directly into the operating system without any
other manipulations, and the operating system resolves that name appropriately.

10.4 File path resolution with relative path notation

The one extension to this operation is that the context of the Include statement is taken, if necessary, relative
to the current STIL file being parsed. This is important if STIL files are collected from different directories
and “relative path” notation is used to reference those files. Once a STIL file is being parsed, any Include
statements that use relative path notation use the location of that file being parsed as the starting point of the
relative path. Be aware that once a directory is changed by including a file from a different directory, any
additional includes in that file are processed relative to that new location until that file has been completely
parsed.
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11. UserKeywords statement 

The UserKeywords statement allows for extensions to the STIL language. The specified keywords are added
to the allowed set in the language. Any implementation of STIL should be written such that the extended
keywords may be processed without error, even if they are not known to the reader. The UserKeywords state-
ment appears at the top level of block statements. Any user-defined keywords shall be defined in a
UserKeywords statement before the keyword is encountered in a STIL statement. Once defined, user key-
words apply to all code that is processed following their occurrence. The UserKeywords statement may
occur multiple times, and subsequent occurrences may repeat previous definitions. UserKeywords defini-
tions add to the STIL reserved word name space. The intent or purpose of UserKeywords defined by a user
shall be specified by the user.

STIL statements referencing user-defined keywords shall conform to STIL statement structure, but they may
occur as either simple statements or block statements. These UserKeyword sections may occur any place a
STIL statement may occur after the initial STIL (version) statement. Block statements may contain informa-
tion not constrained to STIL statement rules; however, if the information contains braces, then all braces
shall be matched inside the block in order to be properly ignored. User-defined keyword STIL statements
may occur inside other STIL block statements. User-defined keyword sections shall be maintained through a
STIL process as appropriate for that process. (In particular, a STIL output should contain any User-defined
keyword sections that were present in the input.)

11.1 UserKeywords statement syntax

UserKeywords (USER_KEYWORDS)+;

UserKeywords: Keyword for the UserKeywords statement. 

USER_KEYWORDS: One or more names to be supported as STIL keywords.

11.2 UserKeywords example

UserKeywords tchn diepad;

12. UserFunctions statement

The UserFunctions statement allows for extensions to the STIL language. The specified functions are added
to the allowed set of functions supported in timing expressions. Any implementation of STIL should be writ-
ten such that the extended functions may be processed without syntax errors in timing expressions, even
though the resulting expression cannot be evaluated. (Errors at this point are environment-dependent; if the
expression is passed to an environment-specific expression processor, then the expression may be properly
processed.) The UserFunctions statement appears at the top level. Any user-defined functions shall be
defined in a UserFunctions statement before the function is encountered in a timing expression. Once
defined, user functions apply to all code subsequently processed. The UserFunctions statement may occur
multiple times, and subsequent occurrences may repeat previous definitions. UserFunctions definitions add
to the set of known time expression operators, and as such affect the name space of time expression opera-
tors only.
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12.1 UserFunctions statement syntax

UserFunctions (USER_KEYWORDS)+;

UserFunctions: Keyword for the UserFunctions statement.

USER_KEYWORDS: One or more names to be supported as STIL timing expression functions.

12.2 UserFunctions example

UserFunctions abs_min abs_max;

13. Ann statement

Annotations are text strings that are maintained through a STIL process as appropriate for that process. (In
particular, a STIL output shall contain any annotations that were present in the input.) Annotations may con-
tain any desired user information or comments. The Ann statement may occur any place a STIL statement
may occur after the initial STIL (version) statement. It may occur as a top-level statement or inside STIL
block statements.

The Ann statement uses two-character delimiters to identify an annotation block. The Ann statement block
starts after the token “{*” and is terminated by the token “*}”. These delimiters shall be separated with
whitespace from the annotation text.

13.1 Annotations statement syntax

Ann {* ANNOTATION  *}

Ann: Keyword for the annotation statement.

ANNOTATION: Text string of annotation.

13.2 Annotations example

Ann {* signals 1-10 are high-level inputs *}
Ann {* all other signals are low levels *}

14. Signals block

The Signals block is used to define individual signal names. Only one Signals block is allowed in a STIL file
set; any other Signal block parsed is ignored. This is to facilitate the collection of several separate STIL pro-
grams for a DUT into a complete test.
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14.1 Signals block syntax

 Signals {
( SIG_NAME < In | Out | InOut | Supply | Pseudo >; )*
( SIG_NAME < In | Out | InOut | Supply | Pseudo > { 

( Termination < TerminateHigh | TerminateLow | TerminateOff | TerminateUnknown > ;) 
( DefaultState < U | D | Z | ForceUp | ForceDown | ForceOff > ; )
( Base < Hex | Dec > WAVEFORM_CHARACTER_LIST ; )
( Alignment <MSB | LSB> ; )
( ScanIn (DECIMAL_INTEGER) ; )
( ScanOut (DECIMAL_INTEGER) ; )
( DataBitCount DECIMAL_INTEGER ; )
} )*

}

Signals: Start of block defining the device signal names.

SIG_NAME: Name of a signal (see 6.10).

In: A signal that has only input data (i.e., input to the DUT).

Out: A signal that has only output data (i.e., output from the DUT).

InOut: A signal that is bidirectional.

Supply: A power supply signal (i.e., power or ground).

Pseudo: A signal that is not a primary DUT signal.

The next set of attributes are defined for both Signals and SignalGroups (see Clause 15). The attributes
defined here apply to both environments.

Termination: This optional attribute defines the global default tester termination required for the signal.
This global default may be overridden by an individual PatternBurst termination specification (See Clause
17 for more information.) The specified termination value should be provided by the tester in order to define
the proper device test. This attribute, if present, shall be defined only once for a signal.

Tester termination may be assumed during test generation as a mechanism to eliminate noise and speed logic
state transitions. In addition, for bidirectional signals, a known termination value may increase fault cover-
age and reduce the pattern size by simulating the terminated driver state as input to the receiver. When tester
termination is assumed during test generation, the assumed termination needs to be applied to the test vec-
tors in order for the Vectors to execute successfully. This termination value may also need to be provided in
a resimulation environment, in order to properly simulate the device response.

TerminateHigh: Indicates that the signal was simulated with high impedance terminated to a 1. This
requires testers to be programmed with the comparator load reference voltage set at the “high” voltage level.
Test generation systems would expect “highs” in place of their expect float-state measures.

TerminateLow: Indicates that the signal was simulated with high impedance terminated to a 0. This
requires testers to be programmed with the comparator load reference voltage set at the “low” voltage level.
Test generation systems would expect “lows” in place of their expect float-state measures.



IEEE
Std 1450-1999 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL)

76 Copyright © 1999 IEEE. All rights reserved.

TerminateOff: Indicates that the signal was simulated with non-terminated float-state measures. This
requires testers to be programmed with the comparator load reference voltage set at the “float-state” voltage
level. Test generation systems would expect float-state measures.

TerminateUnknown: Indicates that the signal was simulated with unknown termination of float-state mea-
sures (receiver feedback is not simulated). This requires testers to be programmed with the comparator load
reference voltage set at the “float-state” voltage level. Test generation systems would expect float-state mea-
sures from this situation.

DefaultState: This optional attribute defines a Drive Event value to apply to this signal if this signal is
unused in a Pattern. The only valid Drive Events for the Default state are D, U, or Z (or their equivalent
names). See Table 9 for a description of these events. This attribute, if present, shall be defined only once for
a signal.

Base: An optional statement indicating the default base used for this signal or group when referenced in the
Pattern block. The allowed bases are Hex and Dec. If no base is specified, the default base is WaveformChar.
This attribute is meaningful only when defined on a signal with a ScanIn or ScanOut attribute, or on a multi-
ple-bit signal definition or group.

Hex: A keyword indicating that the signal’s WaveformChar assignments shall be interpreted as hexadecimal
encoding.

Dec: A keyword indicating that the signal's WaveformChar assignments shall be interpreted as decimal
encoding.

WAVEFORM_CHARACTER_LIST: The set of WaveformChar characters valid for this signal, or any signal in a
multiple-signal definition or group. Each WaveformChar character has a binary value associated to its posi-
tion in the list (left to right, 0 to n-1). Assignments to the group consist of the binary value used to select the
appropriate WaveformChar for each signal, expressed in either the Hexadecimal or Decimal base. (See 15.4
for details.)

Alignment: An optional statement indicating how to map the bits of a non-WaveformChar numeric value
into the individual signals of a multiple-signal definition or group. This attribute is significant only for multi-
ple-signal definitions or groups, and is applied only in the context of Vector assignments (see 21.1 and 21.2).
It is not applied to scan environments (21.4), as scan relies on padding operations to resolve data length
issues.

LSB: A keyword indicating to align the least significant (right most) bit (LSB) of the data with the right most
signal in the group. This attribute only has an effect when the number of bits in the data is larger than the
number of signals in the group.

MSB: A keyword indicating to align the most significant (left most) bit (MSB) of the data with the left most
signal in the group. This attribute only has an effect when the number of bits in the data is larger than the
number of signals in the group.

ScanIn: Identifies this signal or group as a scan input (implies that scan data is pre-padded during scan data
normalization). Also optionally specifies the default length (number of scan WaveformChars) assumed in the
scan data. The ScanIn statement is required if this signal is used to reference scan data (see 21.4).

ScanOut: Identifies this signal or group as a scan output (implies that scan data is post-padded during scan
data normalization). Also optionally specifies the default length (number of scan WaveformChars) assumed
in the scan data. The ScanOut statement is required if this signal is used to reference scan data (see 21.4).
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DataBitCount: Indicates the number of bits of data required to complete waveforms containing multiple-bit
data references. This statement is required whenever a reference is made to a waveform containing multiple-
bit constructs. (See 21.2 for complete semantics.)

Default attribute values are defined in 15.3.

14.2 Signals block example

(NOTE—Signals named A0 and A[0] are both defined.)

Signals {
DIR In;
A0 InOut;
A1 InOut;
A2 InOut;
A3 InOut;
A[0..7] InOut;
B[0..7] InOut;
}

15. SignalGroups block

The SignalGroups block is used to create named references to zero or more signals. A group may be empty.
A group of one signal becomes a rename for that signal. A group name may be used anywhere that an indi-
vidual signal name may be used. The group name may be assigned to a scan signal, in which case, the
default base for the scan data may be specified.

Only one global SignalGroups block shall be allowed in STIL. A global SignalGroups block is a Signal-
Groups block with no DOMAIN_NAME specified.

Any number of SignalGroups blocks with domain_names are allowed. All domain_names shall be unique
across all SignalGroups. (A name in one domain may be the same as a name in another domain without con-
flicting. (See 6.16 for details on name conflict resolution.)

A SignalGroup domain to be used by a Pattern is defined in the PatternBurst block, thereby allowing the
reuse of patterns. The statement to select a domain is “SignalGroups DOMAIN_NAME;”.

15.1 SignalGroups block syntax

SignalGroups (DOMAIN_NAME) {
( GROUPNAME = sigref_expr; )*
( GROUPNAME = sigref_expr {

( Termination < TerminateHigh | TerminateLow | TerminateOff | TerminateUnknown > ;
)

( DefaultState < U | D | Z | ForceUp | ForceDown | ForceOff > ; )
( Base < Hex | Dec > WAVEFORM_CHARACTER_LIST ; )
( Alignment <MSB | LSB> ; )
( ScanIn (DECIMAL_INTEGER); )
( ScanOut (DECIMAL_INTEGER); )
( DataBitCount DECIMAL_INTEGER; )
} )*

}
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SignalGroups: Start of block defining signal group names.

DOMAIN_NAME: An optional name given to a group block allowing it to be referenced by a Timing Block,
Pattern Block, or PatternBurst (see SignalGroups statement in Timing, Pattern, or PatternBurst block).

GROUPNAME: The name given to a group. (See naming rules in 6.10.)

sigref_expr: An expression creating an ordered list of signals (see 6.14).

Termination, TerminateHigh, TerminateLow, TerminateOff, TerminateUnknown, DefaultState, U, D,
Z, ForceUp, ForceDown, ForceOff, Base, Hex, Dec, WAVEFORM_CHARACTER_LIST, Alignment, LSB,
MSB, ScanIn, ScanOut, and DataBitCount are defined in Clause 14.

15.2 SignalGroups block example

// Example of a global (unnamed) SignalGroups block:

SignalGroups {
abus_pins = ’A[0]+A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]’;
bbus_pins = ’B[0]+B[1]+B[2]+B[3]+B[4]+B[5]+B[6]+B[7]’;
bbus_odd = ’bbus_pins-B[0]-B[2]-B[4]-B[6]’;
xbus = ’x[0]+x[1]+x[2]+x[3]’ { Base Hex wW; Alignment
LSB; }
scan_out = ’scan1’{ScanOut 289; Base Hex LHX; Alignment
MSB;}
}

// Example of a SignalGroups block for domain “quality.”
// Same names declared as above, except the ellipsis operator is used:

SignalGroups quality {
abus_pins = ’A[0..7]’;
bbus_pins = ’B[0..7]’;
xbus = ’x[0..3]’ { Base Hex wW; Alignment LSB; }
}

15.3 Default attribute values

When a new group is declared, it is assigned the following set of default property values. These values may
be overridden only by explicit declaration of property values:

— Base WaveformChar;
— Alignment MSB;
— ScanIn is not present;
— ScanOut is not present;
— DataBitCount 0;
— Termination TerminateUnknown;
— DefaultState ForceOff.

A new group declared from a collection of previous groups shall redefine any property value to be used that
is different than the default value. For instance, in the following example the combination of groups a and b
defines the Base Hex environment that is applied across all bits of that group. Even though ‘a’ should never
go to a 0 or 1, and ‘b’ should never go to an L, H, or X, the combination has to reserve space for those states.
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SignalGroups {
    a=’pin1’ {Base Hex LHX;}
    b=’pin2’ {Base Hex 01;}
    “a&b” = ’a+b’ { Base Hex LHX01;}

}

15.4 Translation of based data into WaveformChar characters

STIL supports representation of state assignment to signals using either individual WaveformChars or two
“based” options, Hex or Decimal. Hex options are presented first.

If a signal only uses two states, a “high” and a “low” state, then any hex data mapping should obviously map
those two states into a single bit of hex. But general test data often has additional states, an “x” state, and
sometimes even a “z.” If hex is to be used with these states as well, somehow the hex base needs to know
how many bits are required to determine what state it’s in.

The term “WaveformChar” as used in STIL refers to the single character used in the Vectors to reference a
waveform definition. STIL allows the user to define what characters are used; the set is not fixed or con-
strained (beyond being a single alphanumeric character). So the simple application of a single “bit” of data
says that the single character specified in the Vectors defines a direct mapping to a waveform reference;
for example:

WaveformTable one {
Waveforms {

CLKS {
wW { ’0ns’ D; ’10ns’ D/U; ’20ns’ D; }

} } }

defines a high-going pulse if any given signal in the group CLKS is using a W in the Vectors, and defines no
events (constant low) if a w is used.

The process of mapping numeric hex values to a signal with multiple waveforms defined from ASCII char-
acters is explained next.

This is where the “explicit WaveformChar definition” comes into play. By defining a Base Hex wW in the
groups, the STIL environment maps the derived hex values into these two waveforms, as in the group
definition:

SignalGroups { hexd_CLKS = ’CLK1+CLK2+CLK3+CLK4’ { Base Hex wW; } }

A subsequent reference to the group called “hexd_CLKS” in the Vectors interprets the data following to be
using a hex base (unless the data following has an explicit base defined) and, furthermore, maps that hex
value into a single bit where 0=w and 1=W. 

So the following Vector statements are equivalent:

V { hexd_CLKS=A; }
V { CLK1=W; CLK2=w; CLK3=W; CLK4=w; }
V { hexd_CLKS=\wWwWw; }

// (Note:\w indicates WaveformChars)/(WwWw)
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Adding more references to WaveformChar characters causes less compaction but more waveform flexibility;
for example:

SignalGroups { hexd_CLKS = ’CLK1+CLK2+CLK3+CLK4’ { Base Hex wWX; } }

now requires two bits of hex data to hold the values to map for this set of WaveformChar characters, with a
mapping of: 0=w, 1=W, and 2=X. (This would now be a “two-bit hex.”) Since each signal takes two bits of
value, it now takes two hex characters to hold sufficient data to define the states on all signals. For instance,
using this group definition, the following are equivalent:

V { hexd_CLKS=AA; }
V { CLK1=X; CLK2=X; CLK3=X; CLK4=X; }
V { hexd_CLKS=\wXXXX; } 

One last issue remains with regard to the hex expansion, and that is what to do with undefined states. For
example, in the case of three WaveformChar characters defined for hex, the first WaveformChar maps to the
bits 00, the second to the bits 01, and the third to 10. 11 is unused. It is an error to assign this unused bit
value to a signal.

Decimal operations proceed in exactly the same fashion, except a decimal value (rather than a hex value) is
used to represent the bit settings. For example, if a group was defined as:

SignalGroups { decd_CLKS = ’CLK1+CLK2+CLK3+CLK4’ { Base Dec wW; } }

the following Vector statement

V { decd_CLKS=10; }

would apply the same states to the signals as:

V { hexd_CLKS=A; }

16. PatternExec block

The PatternExec block is the “glue” that defines all of the pieces needed in order to execute patterns on a
tester. It defines the Category names to be used to resolve spec variables, the selector names to indicate
which value (Min, Typ, Max, or Meas) of the spec variables to apply, which Timing block to find the Wave-
formTable references under, and what PatternBurst to use.

Only one global PatternExec block shall be allowed in STIL. A global PatternExec block is a PatternExec
block with no domain name specified. Any number of PatternExec blocks with domain_names are allowed.
All domain_names shall be unique across all PatternExecs.

If the Timing block referenced contains spec variables that have multiple categories, then one or more Cate-
gory statements shall be specified in the PatternExec block. If the Timing block references spec variables
that contain multiple values (i.e., Min, Typ, or Max values), the variables shall be specified in an unambigu-
ous manner, either by resolving which value to apply via a Selector block, or qualifying the variable name in
the reference (for example, ‘var.Min’). The named Timing block shall resolve all WaveformTable names that
are referenced in all Pattern blocks that are referenced.
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16.1 PatternExec block syntax

PatternExec (PAT_EXEC_NAME) {
( Category CATEGORY_NAME ; )*
( Selector SELECTOR_NAME ; )*
( Timing TIMING_NAME ; )
( PatternBurst PAT_BURST_NAME ; )
}

PatternExec: Start of block defining pattern execution.

Category CATEGORY_NAME: Selection of a category, which defines the values of spec variable to be used for
this pattern execution.

Selector SELECTOR_NAME: Selection of a selector which defines the Min, Typ, Max, or Meas values to be
used for each spec variable that is referenced.

Timing TIMING_NAME: Selection of the Timing block that is to be used to resolve all WaveformTable refer-
ences that appear in the Pattern blocks. If a named Timing block is not referenced with this statement (if this
statement is not present), then the timing shall be found in an unnamed Timing block.

PatternBurst PAT_BURST_NAME: A reference to a named PatternBurst block. This statement may not be
present for contexts that are passing Timing information only.

16.2 PatternExec block example

PatternExec maintest_fast {
Category fast;
Selector type1;
Timing simple_wave;
PatternBurst one_functional; 

}

17. PatternBurst block

The PatternBurst block is used to specify a list of patterns that are to be executed in a single execution. Refer
to the PatternExec block for the definition of the other necessary information to fully specify the timing and
waveform information needed to support a pattern burst.

The PatternBurst block contains references to Pattern blocks that appear later in the file. It may also contain
references to Procedures or MacroDefs that have not yet been defined. (See 7.1 for more details.)

A PatternBurst block may reference another PatternBurst block. These references shall be defined before
they are referenced. This eliminates potential recursion in PatternBurst definitions, and facilitates identifica-
tion of PatternBurst or Pattern names.

The PatternBurst block shall have a domain name. This name-space is shared with the Pattern names. The
set of names across both PatternBurst and Pattern blocks shall be unique.
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17.1 PatternBurst block syntax

PatternBurst PAT_BURST_NAME {
( SignalGroups GROUPS_DOMAIN ; )*
( MacroDefs MACROS_DOMAIN ; )*
( Procedures PROCEDURES_DOMAIN ; )*
( ScanStructures SCAN_NAME ; )*
( Start PAT_LABEL ; )
( Stop PAT_LABEL ; )
( Termination { ( sigref_expr 

< TerminateHigh | TerminateLow | TerminateOff | TerminateUnknown > ; )* } )* 
( PatList {

( PAT_NAME_OR_BURST_NAME ; )*
( PAT_NAME_OR_BURST_NAME {

( SignalGroups GROUPS_DOMAIN ; )*
( MacroDefs MACROS_DOMAIN ; )*
( Procedures PROCEDURES_DOMAIN ; )*
( ScanStructures SCAN_NAME ; )*
( Start PAT_LABEL ; )
( Stop PAT_LABEL ; )
( Termination { ( sigref_expr 

< TerminateHigh | TerminateLow | TerminateOff | TerminateUnknown > ; )* } )* 
} )* // end of Pat_name_or_Burst_name

} )+ // end of PatList
} // end of PatternBurst

PatternBurst PAT_BURST_NAME: Start of a block defining a list of Pattern blocks that are to be run as a con-
tinuous burst. 

PAT_NAME_OR_BURST_NAME: Name of a Pattern block or PatternBurst block to execute.

SignalGroups GROUPS_DOMAIN: Optional statement indicating the name of a SignalGroups block that is to
be used in resolving Pattern signal group references. When this statement occurs external to the PatList, all
Patterns specified by the PatList shall use this SignalGroups block in resolving their signal group references.
When this statement is used for a specific pat_name_or_burst_name, then only those Patterns shall use this
SignalGroups block in resolving signal group references.

MacroDefs MACROS_DOMAIN: Optional statement indicating the name of a MacroDefs block that is to be
used in resolving Pattern macro references. When this statement occurs external to the PatList, all Patterns
specified by the PatList shall use this MacroDefs block in resolving their macro references. When this state-
ment is used for a specific pat_name_or_burst_name, then only those Patterns shall use this MacroDefs
block in resolving macro references.

Procedures PROCEDURES_DOMAIN: Optional statement indicating the name of a Procedures block that is to
be used in resolving Pattern procedure references. When this statement occurs external to the PatList, all Pat-
terns specified by the PatList shall use this Procedures block in resolving their procedure references. When
this statement is used for a specific PAT_NAME_or_BURST_NAME, then only those Patterns shall use this Pro-
cedures block in resolving procedure references.

ScanStructures SCAN_NAME: Optional statement indicating the name of the ScanStructures block that con-
tains ScanChain definitions applied for this PatternBurst. When this statement occurs external to the PatList,
all Patterns specified by the PatList shall use these ScanStructures references. When this statement is used
for a specific PAT_NAME_or_BURST_NAME, then only those Patterns shall use this ScanStructures block in
resolving references.
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Start PAT_LABEL: Optional statement indicating to start execution at the vector following the named label
within the Pattern. When the statement is used external to the PatList block, the PAT_LABEL shall be unique
in the set of Patterns referenced in the PatList, and this location defines the start of this PatternBurst. Only
one Start statement external to the PatList block may be specified in a hierarchy of PatternBursts (additional
PatternBursts being referenced with the PatList statement). When the statement is used in reference with a
single name inside a PatList, PAT_LABEL needs to be unique only inside that name, and this start is applied
only to this specific block’s execution. Executing a start statement from a PatternBurst to a label on or inside
a Loop or MatchLoop statement results in undefined behavior.

Stop PAT_LABEL: Optional statement indicating to stop execution after applying the Vector following the
named label within the Pattern. When the statement is used external to the PatList block, the PAT_LABEL
shall be unique in the set of Patterns referenced in the PatList, and this location defines the stop of this Pat-
ternBurst. Only one Stop statement external to the PatList block may be specified in a hierarchy of Pattern-
Bursts (additional PatternBursts being referenced with the PatList statement). When the statement is used in
reference with a single name inside a PatList, PAT_LABEL needs to be unique only inside that Pattern, and
this stop is applied only to this specific block’s execution. Executing a stop statement from a PatternBurst to
a label on or inside a Loop or MatchLoop statement results in undefined behavior.

Termination: Defines tester termination required for signals in the Pattern. PatternBurst terminations, if
present, shall override any signal terminations defined in the Signals block. Termination information, if
present, shall be specified only once for a signal for a PatternBurst. (See Clause 14 for more information on
the use of the Termination statement.)

sigref_expr is a reference to a signal expression (see 6.14).

17.2 PatternBurst block example

PatternBurst one_functional {
PatList { write_vecs {Start xbegin; }//’start’ for write_vecs only

read_vecs {Start xend; }//’start’ for read_vecs only
}

}

18. Timing block and WaveformTable block

The Timing block defines the placement of the timing edges, and the format of the cyclized waveforms that
is referenced by applying WaveformChars to signals in the Vector statements. This block is divided into four
parts, as shown by the four boxes around the syntax statements in the next section. The first part is the Tim-
ing block itself, and contains global information followed by definitions of the waveform tables. The second
part is the Waveform Table block, which names the waveform table and contains common information with
regard to all of the contained waveforms. The third section is the SubWaveforms block, which defines partial
waveforms to facilitate representation of repetitive or shared timing. The forth section is the Waveforms
block, where event and time information is used to define the shape of the waveform for each signal or group
of signals.
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18.1 Timing and WaveformTable syntax

Timing: Start of a Timing bloc, which is a collection of WaveformTables. For a given pattern execution
(refer to PatternExec), all WaveformTable references in the PatternBurst shall be resolved in a Timing block.
The WaveformTable names shall be locally defined. The waveform definitions shall be either defined locally,
or inherited from another waveform table.

TIM_DOMAIN_NAME: Optional name of a timing block. If no name is present, then the timing defined in this
block is applied to any block without references to named timing.

SignalGroups GROUPS_DOMAIN: This statement is optional. If used, it indicates a named set of groups to be
used to resolve group references in the WaveformTables defined in this block.

Timing ( TIM_DOMAIN_NAME ) {
( SignalGroups GROUPS_DOMAIN ; )*

( WaveformTable WFT {
( Period TIME_EXPR; )
( InheritWaveformTable (TIM.)WFT ; )*

Waveforms {
( sigref_expr (WAV) {

( InheritWaveform ((TIM.)WFT.)WAV ; )*
( WFC {

( InheritWaveform (((TIM.)WFT.)WAV.)WFC ; )*
(( EVENT_LABEL: ) ( time_expr ) ( event ) ; )*
} )*

( WFC_LIST {
( InheritWaveform (((TIM.)WFT.)WAV.)WFC; )*
(( EVENT_LABEL: ) ( time_expr )
          ( <event_list ( [EVENT_NUM] ) | event > ) ; )*
} )*

( <WFC | WFC_LIST> { (( EVENT_LABEL: ) ( time_expr ) (\rN)
< SUB_WF_LAB ;
| SUB_WF_LAB[N] ;
| SUB_WF_LAB[#] ; > )* } )*

} )*
}

} )*

}

( SubWaveforms {
( SUB_WF_LAB: Duration time_expr {

(( EVENT_LABEL: )( time_expr )
          ( <event_list ( [EVENT_NUM] ) | event > ) ; )*
} )*

} )
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WaveformTable (WFT): This block defines a set of waveforms for each of the signals. The name of the block
(WFT in this syntax example) is the name that is used in a Pattern to reference the waveform, or it is used in
other WaveformTables for data inheritance.

Period: This statement specifies the time duration of the waveform being defined. Events may occur outside
of this time duration, as defined in 18.4. The next waveform cycle begins after the period value of the current
cycle has expired.

Normally, this statement is required; however, there are two situations where it is optional. One case is
where the InheritWaveformTable statement calls for inheritance from a WaveformTable that has the Period
defined. The second case is where the waveforms within this WaveformTable are designed to be inherited by
another WaveformTable that has the Period defined. In either case, the Period value shall be resolved if the
WaveformTable is referenced within any Pattern.

InheritWaveformTable (TIM.)WFT: This statement is an optional statement. It is used to identify other
waveforms and the Period (if present) as a basis for building new waveforms (i.e., data inheritance). If there
are multiple InheritWaveformTable statements, the last waveform definitions for each signal are the initial
definitions for each signal. Local waveform statements override the inherited waveform; the last inherited
waveform definition is applied to any signal without a local waveform defined. The local Period value, if
present, overrides any inherited Period value.

SubWaveforms: This is the block where waveform segments are defined. These segments are referenced in
the Waveforms section as single or repetitive sections, to define a complete waveform assigned to a signal.
The SubWaveform section is optional, but if present it shall only appear once. Because the SubWaveform
block contains statements that are referenced in the Waveforms block, if present this section shall appear
before the Waveforms block.

SUB_WF_LAB: Duration time_expr: Each SubWaveform is defined with a Duration statement. The Sub-
Waveform label SUB_WF_LAB is a required part of this statement, because the only reference to a SubWave-
form in the Waveforms block is through this label. The time_expr following the Duration keyword specifies
the length of this SubWaveform; this value is used when the SubWaveform is referenced as a repeating con-
struct in a Waveform. The remainder of this statement follows the semantics defined in the Waveforms block
below, with the modification that any reference to WFC or WFC_LIST is deferred until the SubWaveform is
referenced in a Waveform statement.

Waveforms: This is the block where waveforms are defined. Only one Waveforms block shall appear in a
WaveformTable block. Each waveform is identified by the signals that are being defined and an optional
label. The optional label (WAV) is used if this waveform is to be inherited by another one.

sigref_expr: This is defined in 6.14. A particular signal may be referenced in several waveform statements.
Each waveform definition shall have a different set of WaveformChars defined for the signal(s) referenced.

InheritWaveform (((TIM.)WFT.)WAV.)WFC): This statement is optional and is used to define data inheritance
from another Waveform. “TIM.” is optional and is used if the waveform to be inherited is in another Timing
block. “WFT.” is optional and is used if the waveform to be inherited is in another WaveformTable block.
“WAV.” is the label on the waveform that is to be inherited. If the InheritWaveform statement is outside of a
particular WaveformChar definition, then all WaveformChars defined for that signal or group are inherited. If
the InheritWaveform statement is within the WaveformChar definition, then only the definitions for those
waveform characters are inherited. In this last case, a further option of specifying the WFC exists. It is an
error to inherit the same WFC reference for a complete waveform from multiple InheritWaveform statements.
(Incomplete WFC definitions may be inherited as shown in 18.5.) A local definition of a WFC overrides any
inherited definitions.
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WFC: The WaveformChar is a single character. The block of information following this character defines a
waveform to be applied when this character is referenced in a Vector block.

WFC_LIST: A list of WaveformChar characters that are all represented by the set of waveform events. If a
WFC_LIST is used, then at least one of the events in the waveform should be an event_list, and the number of
characters in each should be equal. A WaveformChar List may apply to a single event or to a list of events.
For a single event, each WaveformChar in the list selects the event. For a list of events, each WaveformChar
in the list selects a corresponding event from the event list (i.e., the length of the event list shall be either 1 or
the length of the WaveformChar list).

time_expr: A timing expression shall precede each event in a waveform to specify where in relation to the
beginning of the cycle the event is to take place. There are limitations on the sequencing of events and cycles
in time as outlined below. (See 6.13 for details on these expressions.)

event: An event is an identifier that is used to signal a potential change in the state of the signal. Whether or
not the actual state changes depends on whether the event causes a change from the previous state. The
events may be classified as input or drive events, and output or compare events. All events have fixed defini-
tions as specified in 18.2.

event_list: A list of events used when representing waveforms that are similar in time, but where the actual
event (e.g., whether it goes Up or Down) is selectable by the WaveformChar character from the Vector block.
An event_list is used in conjunction with a WFC_LIST. The event characters are defined in 18.2. All events in
the event_list shall be separated by a ‘/’ character. 

event_list[EVENT_NUM]: This form of event list functions the same as the previous event_list, with the added
feature that multiple data values may be specified in the invoking Vector block. The “EVENT_NUM” repre-
sents an index starting from 0, which selects which of the Vector data values to use. (See 5.7 for an example
of this construct.) The event characters are defined in 18.2. All events in the event_list shall be separated by
a ‘/’ character. 

EVENT_LABEL: This is an optional label that may be used on an event or event list. It serves to give a name to
the time of this event that may be used in following timing expressions. The scope of this label is local to the
current WaveformTable, or any WaveformTable that inherits this event label. EVENT_LABELs in the Sub-
Waveform block, while useful for documentation, may not be referenced in other timing expressions, as the
SubWaveform timing is relative to the usage of the SubWaveform.

SUB_WF_LAB: This is a reference to a SubWaveform defined in the SubWaveforms block. The events of the
referenced SubWaveform are integrated into this Waveform definition.

\rN: Repeats (iterates) the next SUB_WF_LAB N times, where N is a positive integer. The iteration process
increments all time values in the next iteration of the referenced SubWaveform by the Duration of the
SubWaveform.

SUB_WF_LAB[N]: This is a reference to a SubWaveform defined in the SubWaveforms block. The events of
the referenced SubWaveform are integrated into this Waveform definition. This construct may be used when
the SubWaveform definition contains [EVENT_NUM] constructs; the value of all [EVENT_NUM] constructs in
the SubWaveform are replaced with the value N. This allows the SubWaveform with [EVENT_NUM] con-
structs to be reused in a context where all [EVENT_NUM] constructs defined in the SubWaveform are con-
stant, given the instance of the SubWaveform in the Waveform.

SUB_WF_LAB[#]: This is a reference to a SubWaveform defined in the SubWaveforms block. The events of
the referenced SubWaveform are integrated into this Waveform definition. This construct may be used when
the SubWaveform definition contains [EVENT_NUM] constructs and the \rN iteration operator is used; the
value of all [EVENT_NUM] constructs in the SubWaveform is replaced with the current iteration count.
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This allows the SubWaveform with [EVENT_NUM] constructs to be reused in a context where the
[EVENT_NUM] values are incremented relative to the current iteration. All [EVENT_NUM] constructs receive
the same value in a single iteration.

18.2 Waveform event definitions

Table 9 through Table 12 define the events that may be used in the construction of a waveform. These events 
(unlike WaveformChar characters in a Vector) are fixed and cannot be redefined by the user. See 18.4 for an 
explanation of the use of these events in creating a waveform.        

Table 9—Drive events

Identifier Icon Definition

D ForceDown Force logic low. Drive to the low voltage level (VIL). If the driver was 
previously in the off (Z state), then turn the driver on and drive low.

U ForceUp Force logic high. Drive to the high voltage level (VIH). If the driver was 
previously in the off (Z state), then turn the driver on and drive high.

Z ForceOff Force logic high impedance. Turn the driver off. Note: The current U/D 
state is restored if the next drive state is “P.”

P ForcePrior Force logic to last driven state. Turn the driver on and go to the last 
drive state (i.e., If the last drive state was “D,” then go to low; if the last 
drive state was “U” then go to high).

Table 10—Compare events 

Identifier Icon Definition

L CompareLow Compare logic low (edge). Compare for a voltage level lower than 
the low voltage threshold (VOL).

H CompareHigh Compare logic high (edge). Compare for a voltage level higher 
than the high voltage threshold (VOH).

X
x

CompareUnknown Compare logic unknown. Don’t compare. This event is used to ter-
minate any window compare state (X and x may be used inter-
changeably).

T CompareOff Compare logic high impedance (edge). Compare for a voltage 
level between the low voltage threshold (VOL) and the high volt-
age threshold (VOH).
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V CompareValid Compare logic valid level (i.e., not high impedance) (edge). Com-
pare for a voltage level either lower than the low voltage threshold 
(VOL) or higher than the high voltage threshold (VOH).

l CompareLowWindow Compare logic low (window).Terminated by CompareUnknown.

h CompareHighWindow Compare logic high (window).Terminated by CompareUnknown.

t CompareOffWindow Compare logic high impedance (window).Terminated by Com-
pareUnknown.

v CompareValidWindow Compare logic valid level (i.e., not high impedance) (win-
dow).Terminated by CompareUnknown.

Table 11—Expect events

Identifier Icon Definition

R ExpectLow Expect logic low. The DUT output is expected to go to the low state.

G ExpectHigh Expect logic high. The DUT output is expected to go to the high state.

Q ExpectOff Expect logic high impedance. The DUT output is expected to turn off.

M Marker A marker event is any arbitrary point in time. No DUT activity or tester 
activity is expected.

Table 10—Compare events  (continued)

Identifier Icon Definition
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18.3 Timing and WaveformTable example

Timing {
WaveformTable defaults {

Waveforms {
allpins { xX { TMARK: ’t_anchor’ Z;} }

}
}
WaveformTable wft1 {

Period ’tper’ ;
InheritWaveformTable defaults;
Waveforms {

A7M { xX { ’TMARK+tx’ Z; } }
A7  { xX { ’TMARK+tx’ Z; } }
DIR { 01 { ’TMARK+tic1’ D/U; } }
OE_ { rR { ’TMARK+tx’ P; ’@+tic2’ D/U; ’@+tic6’ U; } }
A7 {

rR { ’TMARK+tic1’ P;
’@+tic6’ D/U;
’@+tic4’ U;
’TMARK+tic6+100ns’ Z;
}

lh { ’TMARK’ Z; ’TMARK+tic5’ L/H; ’TMARK+tic9+50ns’T }
}

bbus_pins bbus_aliases {
lh { ‘TMARK’ Z; ’@+tic5’ L/H; ’@1+tic9+50ns’ T; }
fF { ‘TMARK’ Z; ’@+tic2’ t; ’@+5ns’ x; }
}

}
}

Table 12—Unresolved events

Identifier Icon Definition

N ForceUnknown Force logic unknown. The driver is turned on, but the Up/Down state of 
the driver is not defined. This event would map into a ForceUp or Force-
Down once the logic state of the data is determined.

A LogicLow Unknown direction, logic low. The driver is in an unknown direction, 
but the logic level is defined as low. This event maps into a ForceDown 
or a CompareLow event once the state of the driver is determined.

B LogicHigh Unknown direction, logic high. The driver is in an unknown direction, 
but the logic level is defined as high. This event maps into a ForceUp or 
a CompareHigh event once the state of the driver is determined.

F LogicZ Unknown direction, logic high impedance. As in the case of the       
LogicLow and LogicHigh, the state of the driver is not known. This 
event would map into either a ForceUnknown or a ForceOff event once 
the state of the driver is determined.

? Unknown Unknown direction, logic unknown. Nothing is known about this event. 
The drive state, compare relevance, and logic level are all unknown.
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WaveformTable misc {
Waveforms {
   some_pins {

   InheritWaveform wft1.bbus_aliases;
   xy { ’0ns’ D; ’10ns’ D/U; }
   }

   some_more_pins {
   ab { InheritWaveform wft1.bbus_aliases.lh; }

   }
   }
}

18.4 Rules for timed event ordering and waveform creation

In a WaveformTable, a waveform is described by means of a list of event characters, each of which has a
time association and is used to specify a change in either the drive waveform (input to the DUT) or the com-
pare state (output from the DUT). 

There are four categories of events: drive, compare, expect, and unresolved events. Each category is pro-
cessed as a separate stream of information, independently from events present for other categories. Unre-
solved events are a consequence of partial waveform generation, in which case it may not be possible to
form the waveform without first applying some kind of pre-processing rules to turn these events into one of
the drive or compare events. Expect events reflect information about DUT response that may differ in timing
from compare events. Figure 31 is an example of Waveforms defined on two signals, and the resulting wave-
forms generated from Vector data.

T0 T0 T0 T0

U D UDU D

U D Z D D Zl x

40ns 40ns 40ns
CLK

SIG

STIL 1.0;
Signals { CLK In;   SIG InOut; }
Timing { WaveformTable wft {    Period ’40ns’;

Waveforms {
CLK { 1 { ’15ns’ U; ’25ns’ D; } }
SIG { 01 { ’10ns’ D/U; ’20ns’ D; 

’30ns’ Z; } }
SIG { LH { ’15ns’ l/h; ’30ns’ x; } }
}

  } }

Figure 31—Creating waveforms from events
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Each Vector references a WaveformTable that defines the period value and the waveform to be applied to
each signal of the DUT. The rules by which the individual waveforms are connected are as follows:

a) The start of the cycle is referred to as T0. An event may be specified at ‘0ns’, in which case it occurs
at T0.

b) The Period statement establishes the end of the cycle, and hence the beginning (T0) for the subse-
quent vector.

c) On each signal, all events present for each collection of event type (drive, compare, expect, and unre-
solved) shall occur in time in the same sequence that they appear in the Waveform definition. Events
of any collection may extend beyond the end of the cycle, as long as the last event of that collection
occurs prior to the first event of that collection in the next cycle. Events of any collection may be
specified prior to T0 (as a negative value), as long as the first event (most negative value) of that col-
lection occurs after the last event of that collection in the previous cycle. Events between different
collections do not need to be in time sequence, and may be combined in any fashion as long as the
events in a single collection are not out of time sequence.

d) The time for any given event may be a constant or an expression. The pertinent category’s event
order shall be maintained for all applied values of the time expression. 

e) At the point that a waveform is applied in a Vector, all statements in that waveform shall define timed
events, consisting of both an event and a time value. (This requirement is in consideration of par-
tially defined waveforms, as described in 18.5.)

Figure 32 details an example of events extending into the next cycle.
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STIL 1.0;
Signals {

CLK In;
SIG1 InOut;
SIG2 InOut;
}

SignalGroups {
sigs = ’SIG1+SIG2’;
}

Timing {
WaveformTable wf1 {

Period ’40ns’;
Waveforms {

CLK  { 1 { ’0ns’ U; ’10ns’ D; } }
sigs { 01 { ’5ns’ P; ’15ns’ D/U; ’35ns’ D; ’50ns’ Z; } }
}

}
WaveformTable wf2 {

Period ’50ns’;
Waveforms {

CLK  { 1 { ’0ns’ U; ’10ns’ D; } }
sigs { LH { ’35ns’ l/h; ’45ns’ x; } }
}

}
}

Pattern {
W wf1; V { sigs=11; CLK=1; }
W wf2; V { sigs=LH; }
W wf1; V { sigs=01; }

}

T0 T0 T0 T040ns 50ns 40ns
CLK

SIG1
P U D Z l x P D D Z

P U D Z h x P U D Z
SIG2

Figure 32—Waveforms extending into the next cycle
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18.5 Rules for waveform inheritance

STIL supports two mechanisms to re-use previously defined waveform information: the InheritWave-
formTable, and the InheritWaveform statements. The Inherit constructs allow data to be incorporated into a
new definition, with modifications. Inherited information is applied at the waveform statement level;
WaveformChar definitions per signal may be modified.

Waveform inheritance has two different means of combining information, depending on the type of wave-
form statement being inherited. These two types of inherited information shall not be mixed in a single
waveform statement.

The first type of inheritance is a complete waveform definition. A complete waveform is defined as one that
has both time expressions and events for all statements in the waveform. For a referenced signal, the com-
plete waveform description defined for a WaveformChar shall be applied unless that WaveformChar is rede-
fined for that signal, by defining another waveform definition for that WaveformChar for that signal. Any
new definition shall completely replace an inherited definition.

The second type of inheritance is applied to partially defined waveform definitions. A waveform statement
may be defined with only time expressions present for each statement, or only event identifiers present for
each statement. These statements are combined, through inheritance, to create a complete waveform state-
ment containing “timed event” statements. This process allows waveform “shapes” to be defined indepen-
dently of timing, as shown in the example below. Waveforms defined this way shall have an equal number of
statements in the waveforms defining the same WaveformChar for a signal; and statements are combined in
a linear fashion across the two definitions and are independent of event-type. Waveforms are combined per
signal, based on the common partial definitions for each WaveformChar present.

WaveformTable shape {
Waveforms {

allpins “allpins_shapes” { 01 { ForcePrior; ForceDown/ForceUp; 
ForceDown }}

clock “C_shapes” { C { ForceUp; ForceDown }}
}

}
WaveformTable ts1 {

Period ’40ns’;
InheritWaveformTable shape;
Waveforms {

allpins “allpins_events” { 01 { ’0ns’; ’25ns’; ’35ns’; }}
clock “C_events” { C  { ’20ns’; ’30ns’; }}
}

}
WaveformTable ts2 {

Period ’40ns’;
InheritWaveformTable shape;
Waveforms {

group_a_pins “a_pins_events” { 01 { ’0ns’; ’25ns’; ’35ns’; }} 
//first half of allpins

group_b_pins “b_pins_events” { 01 { ’5ns’; ’30ns’; ’40ns’; }} 
//second half of allpins

clock “C_events” { C { ’20ns’; ’30ns’; }}
}  }
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19. Spec and Selector blocks

Spec blocks are used to define the value of the variables and expressions that are used within the waveform
definitions. Each Spec block may contain Category blocks (which contain spec variable definitions), or Vari-
able definitions directly. 

There may be multiple Spec blocks present. Each Spec block shall have a domain name, and each Spec
block name shall be unique across all Spec blocks. Spec blocks are never referenced directly; the informa-
tion contained in Spec blocks is globally accessible. The defined spec variables are resolved through Cate-
gory and Selector references.

Each individual variable name may: 

a) Be assigned a single value which defaults to Typ; or
b) Be assigned one to three values (called Min, Typ, and Max values); or 
c) Be assigned to be a measured value called Meas. 

The Min, Typ, Max, or Meas values are selected by means of the Selector block. The provision for defining
and selecting values allows spec sheet parameters to be represented. A timing expression may specifically
select one of the values by specifying var-name.<Min|Typ|Max|Meas>.

The fourth variable name qualifier, “Meas,” is a facility to allow the resulting set of timing spec values to be
based upon a measurement that is made at run time. The mechanics of making the measurement and notify-
ing the run time system that manages the expression is not defined as part of STIL.

The Selector block is used to specify for each variable name whether to use the Min, Typ, Max, or Meas val-
ues. Refer to Clause 17 to see how the Selector and Category names are selected for a given pattern
execution.

There may be multiple Selector blocks present. Each Selector block shall have a domain name, and each
Selector block name shall be unique across all Selector blocks.

Spec variable values shall be defined either by variable name within a Category block, or by category name
within a Variable block. Any given variable-category value shall be defined only once. In general, a set of
spec values would be organized by using either the Category form of the syntax or the Variable form of the
syntax only.

19.1 Spec and Selector block syntax

Spec (SPEC_NAME) { // this block statement defines variable values for a given category
( Category CAT_NAME {

( VAR_NAME = time_expr; )* // define only the Typ value
( VAR_NAME { (Min time_expr;) (Typ time_expr;) (Max time_expr;) } )*
} )+

} 
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Spec (SPEC_NAME) { // this block statement defines category values for a given variable
( Variable VAR_NAME {

( CAT_NAME = time_expr; )* // define only the Typ value
( CAT_NAME { (Min time_expr;) (Typ time_expr;) (Max time_expr;) } )*
} )+

}

Selector SELECTOR_NAME {
( VAR_NAME < Min | Typ | Max | Meas >; )*
}

Spec: Start of a block defining spec variables.

SPEC_NAME: The name of the spec table. This name is for reference only. It is not used in any subsequent ref-
erences. All defined spec_names shall be unique.

Category CAT_NAME: Start of the definitions for a list of variables within the named category. This name is
used in the PatternExec to identify a category of values for variables to use.

Variable VAR_NAME: Start of the definitions for a list of categories for the named variable.

CAT_NAME: Name of the category.

VAR_NAME: Name of the variable.

time_expr: Timing definition. (See 6.13 for details on time expressions.)

Min: Minimum value for the variable.

Typ: Typical value for the variable (default if no Min, Typ, Max specified).

Max: Maximum value for the variable.

Meas: Measured value to be assigned to the variable at execution time by the test program.

Selector SELECTOR_NAME: An optional block to allow selection of Min, Typ, Max, and Meas values to be
used in conjunction with a PatternExec block.
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19.2 Spec and Selector block example

Spec tmode_spec {
Category tmode {

sp1 = ’50.00ns’;
sp5 = ’40.00ns’;
shmsp5= ’50.00ns’;
sp10p= ’0.00ns’;
sp10b= ’0.00ns’;
dutyp= ’0.00ns’;
dutyb= ’0.00ns’;
}

Category tmode_slow {
sp1  {Min ’30.00ns’;   Typ ’50.00ns’;   Max ’70.00ns’;}
sp5  {Min ’35.00ns’;   Typ ’40.00ns’;   Max ’55.00ns’;}
shmsp5{Min ’0.00ns’;    Typ ’23.00ns’;   Max ’40.00ns’;}
sp10p {Min ’0.00ns’;    Typ ’0.00ns’;    Max ’10.00ns’;}
sp10b {Min ’-10.00ns’;  Typ ’0.00ns’;    Max ’0.00ns’;}
dutyp {Min ’-10.00ns’;  Typ ’0.00ns’;    Max ’0.00ns’;}
dutyb {Min ’-20.00ns’;  Typ ’0.00ns’;    Max ’0.00ns’;}
}

}

Selector tmode_typ {
sp1      Typ;
sp5      Typ;
shmsp5   Typ;
sp10p    Typ;
sp10b    Typ;
dutyp    Typ;
dutyb    Typ;
}

Selector tmode_mix {
sp1      Min;
sp5      Typ;
shmsp5   Max;
sp10p    Typ;
sp10b    Typ;
dutyp    Min;
dutyb    Max;
}
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Figure 33 demonstrates how the information in 19.2 might be referenced in a PatternExec, and how the Spec
and Selector are used in combination to specify values for variables.

20. ScanStructures block

The ScanStructures block is used to define Scan Chains utilized in the scan data. This information is
included optionally for documentation and failure analysis. The ScanStructures are not required for transla-
tion of STIL to a tester’s format, since the scan data is in tester ready format. 

Scan Chains are constructed as a series of Scan Cells. A Scan Cell may be comprised of a single memory
element (e.g., a register or flip-flop) or a dual memory element (e.g., MASTER/SLAVE latch). In addition, a
Scan Cell may contain other memory elements (shadows).

PatternExec 
Functional1 {

Selector 
tmode_mix;

Category 
tmode_slow;

Timing time1;
PatternBurst 

FunPatterns;
}

Figure 33—Using the PatternExec to resolve Spec and Selector information

Spec: tmode_spec Category: tmode Category: tmode_slow
Param Sele Meas Min Typ Max Min Typ Max

sp1 30 ns 50 ns 30 ns 50 ns 70 ns

sp5 40 ns 40 ns 35 ns 40 ns 55 ns

shmsp5 40 ns 50 ns 0 ns 23 ns 40 ns

sp10p 0 ns 0 ns 0 ns 0 ns 10 ns

sp10b 0 ns 0 ns –10 ns 0 ns 0 ns

dutyp –10 ns 0 ns –10 ns 0 ns 0 ns

dutyb 0 ns 0 ns –20 ns 0 ns 0 ns

Key
= Selected value
= Unselected value
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The Scan Chain definition is limited to indicating the interconnection of Scan Cells and inverters (using the
“!” character).

20.1 ScanStructures block syntax

ScanStructures (SCAN_NAME) {
( ScanChain CHAINNAME {

ScanLength DECIMAL_INTEGER;
( ScanOutLength DECIMAL_INTEGER; )
( ScanCells CELLNAME-LIST ; ) 
( ScanIn SIGNALNAME; )
( ScanOut SIGNALNAME; )
( ScanMasterClock SIGNALNAME-LIST ; )
( ScanSlaveClock SIGNALNAME-LIST; )
( ScanInversion < 0 | 1 >; )
} )*

} 

ScanStructures: Block to define scan chains. 

SCAN_NAME: Optional name of this ScanStructures block. Required if multiple ScanStructures blocks are
defined. May be referenced in ScanStructures statement in the PatternBurst.

ScanChain: Block to define a single scan chain. Multiple scan chains may be defined in the ScanStructures
block. CHAINNAME is a unique name associated with each scan chain definition.

ScanLength: Identifies the number of scan cells in the scan chain. DECIMAL_INTEGER is used to audit the
ScanCells definition. The length of the actual scan data for a chain may be less than the overall length
(incomplete scan, non-observable cells, etc.). 

ScanOutLength: Identifies the number of observable scan cells in the scan chain. Allows for specification
of a scan output in the middle of a scan chain. The default length is ScanLength (i.e., all input cells are
observable). DECIMAL_INTEGER is the number of observable latches. It is less than or equal to the Scan-
Length. The length of the actual scan data for a chain may be less than the overall length (incomplete scan,
non-observable cells, etc.).

ScanCells: Identifies the scan cells comprising the scan chain. CELLNAME-LIST is ScanLength scan cell
names separated by whitespace. Inversion is also specified by interleaving the “!” character between scan
cell names (also includes before the first scan cell and after the last scan cell). Scan cell names are ordered
from the first scan cell to be shifted (input) to the last scan cell to be shifted (output). 

ScanIn: Identifies the input of the scan chain. A ScanIn SIGNALNAME may be either a Primary Signal (i.e.,
external source via a tester) or a Pseudo Signal (i.e., internal source via an on-product structure). If no
ScanIn is specified, then the first cell’s scan input is indeterminate. Defining a lineheld state on the scan
chain would require defining and assigning a pseudo signal with a DefaultState. 

ScanOut: Identifies the output of the scan chain. A ScanOut signalname may be either a Primary Signal
(i.e., external observation via a tester) or a Pseudo Signal (i.e., internal observation via an on-product struc-
ture). If no ScanOut is specified, then the scan cells are not directly observable; values would have to be
propagated through internal logic to an observation point.
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ScanMasterClock: Identifies a list of signal names which are MASTER Clocks. MASTER Clocks scan
data into single memory elements (e.g., registers or flip-flops) or into the MASTER latch of a dual memory
element. SIGNALNAME-LIST is one or more signal names separated by whitespace.

ScanSlaveClock: Identifies the signal names which are SLAVE Clocks. A SLAVE Clock scans data into a
SLAVE latch of a dual memory element. SIGNALNAME-LIST is one or more signal names separated by
whitespace.

ScanInversion: Indicates the overall relative inversion from before the first scan cell to after the last scan
cell. 0 = no inversion, 1 = inversion.

20.2 ScanStructures block example

ScanStructures {
           ScanChain chain1a {
                 ScanLength 4;
                 ScanIn si1;
                 ScanOut so1;
                 ScanMasterClock clk;
                 ScanInversion 1;
                 ScanCells ! a1 a2 a3a a4a;
                 }
            ScanChain chain1b {
                 ScanLength 4;
                 ScanIn si1;
                 ScanOut so2;
                 ScanMasterClock clk;
                 ScanInversion 1;
                 ScanCells ! a1 a2 a3b ! a4b ! ;
                 }
      }

NOTE (Figure 34)—This example assumes that chain1a and chain1b are used independently. Therefore, both scan 
lengths are 4, and separate Procedures or Macros are required to load/unload the chains, since the value of the select 
signal is required to control which scan cells are being loaded/unloaded. Alternatively, a different domain could be 
defined which assumes that both chains are used concurrently (serially). In this mode, the effective ScanOutLength for 
the second scanned chain would be 2, and a single Procedure or Macro could perform the load/unload operations.

Figure 34—ScanStructures block example

clk

si1

select

a1 a2 a3a a4a so1

so2a4ba3b
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21. STIL Pattern data

Pattern Statements may appear in Pattern blocks, MacroDefs blocks and Procedures blocks. These state-
ments consist of vectors and control information required to implement device tests. 

The following pattern constructs contribute to a reduced pattern file size:

a) Pattern vectors need only define delta changes. Only those signals that change from one vector to the
next need to be defined. Optionally, Signals may be re-specified for purposes of clarity at the STIL
writer’s discretion.

b) Patterns support scan constructs. Scan data is a primary contributor to pattern file size; STIL sup-
ports definition of only the relevant scan data, including incomplete scan and non-normalized data
lengths.

c) Pattern vectors support compaction. Both vector group data and scan data may be defined in a com-
pressed format using Repeats and Hex representations.

d) Procedures and Macros. Common functions may be defined to eliminate redundant specification
within patterns.

21.1 Cyclized data

Vector Statements may be defined as cyclized data. Cyclized data consists of waveform specifications per
signal applied in a common period of time. Cyclized data is typically tester ready. However, complex wave-
forms may be defined which require STIL translators to further sub-divide the data into waveforms that may
be applied by the tester. 

Cyclized data consists of a Signal reference associated to vector data:

sigref_expr = vec_data;

sigref_expr: This is defined in 6.14. 

vec_data: The vector data to be associated to the sigref_expr. The vec_data shall always define at least an
individual WaveformChar for each SIGNAL-NAME in sigref_expr. (See also the impact of references to multi-
ple bit waveforms in 21.2.) The vector data may be expressed in different bases with optional repeats for data
compaction. The Signals or SignalGroups may specify a default Base when the group is defined. Locally,
the following flags may be used to override the Base specification:

\w: WaveformChar format (e.g., \w0100 xxxx qqqQQQ). (See 6.15 for more information.)

\rN XXX: Repeat the next group of characters N times (e.g., \r60 01). N copies of the XXX characters are
generated. The XXX characters are delimited by whitespace and may be WaveformChars, Hexadecimal char-
acters, or Decimal characters.

\h: Hexadecimal format (e.g., \h E4B2). Specifies that the vec_data will switch to a hexadecimal data
stream, whose binary value shall select the WaveformChars defined in the Base Hex attribute of the Signals
or SignalGroups declaration. Note the required whitespace delimiter between the \h and the hexadecimal
data stream. The hexadecimal data stream shall consist of valid hexadecimal characters (0..9, a..f, A..F) with
optional repeated sequences (e.g., \h A0 \r5 F8 0E <==> A0F8F8F8F8F80E).

\hCHARS: Hexadecimal format with a local WaveformChar association (e.g., \h01 69BC). Specifies that
the vec_data will switch to a hexadecimal data stream, whose binary value shall select the locally defined
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WaveformChars. Note the whitespace delimiter between the locally defined WaveformChars and the Hexa-
decimal data stream. The hexadecimal data stream shall consist of valid hexadecimal characters (0..9, a..f,
A..F) with optional repeated sequences (e.g., \hLH A0 \r5 F8 0E <==> A0F8F8F8F8F80E).

\d: Decimal format (e.g., \d 79). Specifies that the vec_data will switch to a decimal data stream, whose
binary value shall select the WaveformChars defined in the Base Dec attribute of the Signals or
SignalGroups declaration. Note the required whitespace delimiter between the \d and the decimal data
stream. The decimal data stream shall consist of valid decimal characters (0..9) with optional repeated
sequences (e.g., \d 21 \r5 38 21 <==> 21383838383821).

\dCHARS: Decimal format with local WaveformChar association (e.g., \dHL 375). Specifies that the vec_data
will switch to a decimal data stream, whose binary value shall select the locally defined WaveformChars.
Note the whitespace delimiter between the locally defined WaveformChars and the decimal data stream. The
decimal data stream shall consist of valid decimal characters (0..9) with optional repeated sequences
(e.g., \dLH 21 \r5 38 21 <==> 21383838383821).

\lN: This option is used in two contexts: first, for shift data passed in procedure or macro calls; and second,
for multiple-bit data passed into waveforms that contain square-bracket constructs. This may be used to
specify the DataBitCount of the data if different from the length specified by the data present.

21.2 Multiple-bit cyclized data

Vector statements may contain references to groups that were defined to support multiple-bit data defini-
tions. Multiple-bit data is defined in waveforms through the use of square brackets (See Clause 18 for addi-
tional details.)

Multiple bit data may be presented in cyclized data in two formats. Each format has a set of requirements in
order to process this multiple-bit data.

The first format is identical to the Cyclized Data statement presented in 21.1, with the extension that the
VEC_DATA length is longer than the length necessary to assign a bit to each signal referenced in sigref_expr.
The number of WaveformChars is defined by the DataBitCount statement associated with the definition of
the Signal or Group being referenced (and the default is 1).

The second statement format is:

sigref_expr { ( vec_data; )+ }

In this format, there are one or more vec_data; statements. Each statement contains the number of Wave-
formChar references necessary to apply to all signals defined in the sigref_expr. There are as many state-
ments defined as index values present in the waveform definition applied.

In addition to these constructs, multiple-bit data has the following additional requirements:

— The sigref_expr shall be a group only. The definition of this group shall include a DataBitCount
attribute. The definition of this group shall also include a Base attribute identifying the multiple-bit
WaveformChars that may be applied to the signals in this group.

— The waveform referenced by the WaveformChars shall define all WaveformChars listed in the Base
attribute in a single waveform definition. All waveforms applied across all signals defined in a
multiple-bit group shall have the same number of indexed timed events.
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21.3 Non-cyclized data

Vector statements may define non-cyclized data. Non-cyclized data may be provided during format transla-
tion, or as additional information. Specialized tools may be required to process non-cyclized data into
cyclized form.

Non-cyclized data consists of a time value, a signal or group reference (or group expression), and a list of
Waveform event changes. There shall be a one-to-one relationship of signals in the expression to events in
the event_list. A single time may apply to a block of signal/event pairs.

@TIME_VALUE sigref_expr = EVENT_LIST ;
@TIME_VALUE { ( sigref_expr = EVENT_LIST ; )+ }

@TIME_VALUE: An integer time offset relative to the start of the Vector. A Vector block may be comprised of
a single Vector with all events relative to a common T0. The TIME_VALUE has an assumed unit type as
defined via the TimeUnit statement (see 23.1).

sigref_expr: This is defined in 6.14.

EVENT_LIST: A series of any of the waveform table events allowable in a waveform table. (See Table 9
through Table 12 for a definition of the supported events.)

The following are example non-cyclized data definitions:

@30 CLK=U; @50 CLK=D; @100 DATA6=U; @200 { A1=U; A2=D; }

21.4 Scan data

Serial data may be defined to be applied through an iterative operation on a set of Vectors. The iteration pro-
cess is defined with the Shift statement, and the serial data is defined only in the context of a procedure or
macro call. The syntax for this data is:

sigref_expr = serial_data;

sigref_expr: A single signal or a GROUPNAME of a single signal with either the ScanIn or ScanOut attribute
(see Clause 14). The attribute identifies the required padding; scan inputs are pre-padded during scan length
normalization, and scan outputs are post-padded. (See 24.4 for more information about scan functions and
24.5 for parameter-data substitution.)

serial_data: A stream of scan data to be applied serially. The serial data stream may utilize the same Base
and Repeat compression flags as used in VEC_DATA. The length of the serial_data is typically the length
defined by the ScanIn or ScanOut attributes. However, the length may be less than these values to support
incomplete scans (only a subset of the scan cells are scanned). 

The following are example scan data definitions:

Call shift_one {
       si_1=100100010011100101; // length implied by Scan definition
       so_2=\l20 \hLHX 5821940559; // incomplete scan (length=20) w/ base
           // definition. Equivalent to HHXLLXLHXHHLLLHHHHXH 
}
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21.5 Pattern labels

Any Pattern Statement may have an associated label. Labels are used to identify Start/Stop vectors and to
identify Goto targets. Labeling non-vector statements results in selecting the next executable vector. 

Labels consist of a user-defined name followed by a colon. The user-defined name may be double quoted.
Labels shall be unique per Pattern or Procedure block. As the general purpose of defining a Macro is to
facilitate re-use of that information in a Pattern, and because labels need to be unique inside a Pattern, labels
(if present in MacroDefs blocks) shall be ignored during processing. The following are example labels:

       mylabel:     V { } // simple label name.
       “mylabel”:   V { } // optionally quoted label, 

// different than the unquoted name.
       “mylabel+2”: V { } // required quoted label,

// to protect special character.

22. STIL Pattern statements

22.1 Vector (V) statement

The Vector statement is used to define stimulus and response for one test cycle. 

NOTE—A test cycle is typically equivalent to a tester’s T0 cycle. However, complex events may be defined which may
require the STIL translator to segment the test cycle into multiple tester T0 cycles.

Vector statements typically only specify the delta changes from the previous vector. Vector statements may
contain cyclized data and/or non-cyclized data. The syntax of Vector statements is: 

( LABEL : )    V(ector) { ( cyclized data )* ( non-cyclized data )* }

The following are example Vector statements:

// change Signal “abc” to WaveformChar ‘h’
Vector { abc=h; }
V { abc=h; } // ‘Vector’ may be abbreviated to ‘V’

// labeled vector which changes “outs” to WaveformChars 
//‘LLLHHHZZZXXX’
label1: V{outs=\hLHZX 015ABF; }

// non-cyclized info with cyclized data
// Select the waveform “1” for the signal “control” and also apply a
// ForceUp event at TimeUnit * 30.
V { control=1; @30 control=U; }

// another cycle exactly like the previous one
V { }
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22.2 WaveformTable (W) statement

The WaveformTable statement is used to specify the current WaveformTable to use during vector translation.
Every signal’s WaveformChar is translated using the specified WaveformTable for subsequent vectors. A
WaveformTable reference is applied to all subsequent Vector statements until changed with another
WaveformTable statement. It is recommended that only one WaveformTable statement precede a Vector
statement; however, if multiple statements exist, the last one is applied to the Vector statement. The syntax of
the WaveformTable statement is:

( LABEL : )   W(aveformTable) NAME ;

The following are example WaveformTable statements:

WaveformTable init; 
V { pin1=H; pin2=H; }     // ’H’ definition from WaveformTable(WFT) 

’init’

W main;                   // “WaveformTable” may be abbreviated to ’W’
V { pin2=Z; }             // “pin2” value of ’Z’ in WFT ’main’, 

“pin1”
                          // didn’t change, so its value of ’H’ is also 
                          // in WFT ’main’

22.3 Condition (C) statement

The Condition statement is used to define stimulus and/or response to be set up, but deferred from being per-
formed until a Vector statement is defined. Condition statements are useful in scan testing to define the
“background” states for signals required when applying the scan data. The WaveformTable used to translate
the conditions is the waveform in effect at the time of the next Vector, not the waveform in effect at the time
of the Condition statement. Multiple condition statements may be defined between vector statements. The
last state defined in a Condition or Vector statement for each pin is the state applied to that pin on the Vector
statement. A Vector statement defining a WaveformChar to be applied to a signal shall override any
WaveformChars defined in preceding Condition statements. The syntax of the Condition statement is: 

( LABEL : )   C(ondition) { ( cyclized data )* ( non-cyclized data )* }

The following are example Condition statements:

// define “pin1” to be WaveformChar ’H’ for next vector
Condition { pin1=H; }
C { pin1=H; } // ’Condition’ may be abbreviated to ’C’

     // change the WaveformChar to ’L’ (’H’ never got output)
W wft1;    
C { pin1=L; } // assumes ’L’ is output using wft1 definition
W wft2;
V { } // “pin1” output is ’L’ as defined by wft2

See 5.4 for examples illustrating practical usage of Condition statements.
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22.4 Call statement

The Call statement transfers execution to the named procedure block. The procedure shall be previously
defined in a Procedures block section. The current WaveformChars for every signal shall be reinstated upon
return from the procedure. A procedure call may define values to be substituted in the procedure, typically
used to implement scan tests. The syntax of the Call statement is:

( LABEL : )   Call PROCNAME ;
( LABEL : )   Call PROCNAME { ( scan-data )* ( cyclized data )* 

( non-cyclized data )* }

Non-cyclized data, if present, is applied relative to the start of the Call execution. This data is applied
directly to referenced signals irrespective of ’#’ or ’%’ references. (See 24.5 for information about data sub-
stitution via ’#’ and ’%’ references.)

The following are example Call statements:

Call setup; // self contained procedure

Call scanload { // procedure which implements scan, pass in scan 
data 

     si1=8C92206;     // “si1” defined as ScanIn 28; Base Hex 01
     si2=\l14 9CC0; } // “si2” defined as Base Hex 01;

Call stability { cntl=0; } // procedure with values substituted 
      

22.5 Macro statement

The Macro statement instantiates the specified macro. The macro shall be previously defined in a
MacroDefs block section. Upon completion of the macro, the current WaveformChars for every signal are
retained for subsequent Vectors. A Macro statement may define values to be substituted in the macro, typi-
cally used to implement scan tests. The syntax of the Macro statement is:

( LABEL : )   Macro MACRONAME ;
( LABEL : )   Macro MACRONAME { ( scan-data )* ( cyclized data )*

( non-cyclized data )* }

Non-cyclized data, if present, is applied relative to the start of the Macro execution. This data is applied
directly to referenced signals irrespective of ’#’ or ’%’ references. (See 24.5 for information about data sub-
stitution via ’#’ and ’%’ references.)

The following are example Macro statements:

Macro reset;

Macro scanunload { 
     so1=8C92206;     // “so1” defined as ScanOut 28; Base Hex LH
     so2=\l14 9CC0; } // “so2” defined as Base Hex LH;

Macro clksoff { clk1=0; clk2=0; clk3=1; }
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22.6 Loop statement

The Loop statement defines a block of Pattern statements to be looped upon. The loop count is a positive
integer that specifies how many times the block of pattern statements is to be executed. The syntax of the
Loop statement is:

( LABEL : )   Loop LOOPCNT { ( pattern-statements )* }

Executing a Start or Stop statement from a PatternBurst to a label on or inside a Loop statement results in
undefined behavior.

The following are example Loop statements:

outer: Loop 10 { // label “outer” serves only as documentation
   V { clk1=P; clk2=0;} 
   inner: Loop 100 {
      V { clk1=0; clk2=P; }
      } // inner
   } // outer 

22.7 MatchLoop statement

The MatchLoop statement defines a block of Pattern statements to be looped (repeated) until all Pattern
statements are executed without differences between the output information present in the Pattern data, and
the actual response of the device, or until a specified number of loops are exceeded.

The MatchLoop construct includes the definition of a set of Patterns to be executed after all Patterns have
passed in the loop body. These Patterns may also be looped, and are intended to hold the device in an “idle”
state until the test hardware is ready to progress to the next statement. These Patterns are enclosed in a
BreakPoint block in the MatchLoop syntax. The syntax of the MatchLoop construct is:

( LABEL : ) MatchLoop < LOOPCNT | Infinite > {
(pattern-statements)+ 
 ( LABEL : ) BreakPoint { (pattern-statements)+ }
 }

Pattern-statements shall be present in a MatchLoop. The BreakPoint block shall be present. The LOOPCNT is
either an integer or the keyword “Infinite.” An integer value shall be greater than or equal to one, which
defines the maximum number of loops before the execution of this loop is stopped and this Pattern is termi-
nated. The keyword “Infinite” defines that this loop shall execute until all Patterns agree with the device
response.

BreakPoint vectors are used to allow test hardware to re-establish the pattern flow after all MatchLoop con-
ditions have been met. BreakPoint patterns may execute zero or more times depending on test hardware.

Label statements inside a MatchLoop may be referenced only from inside that MatchLoop; it is illegal to
jump (Goto) into a MatchLoop. Executing a Start or Stop statement from a PatternBurst to a label on or
inside a MatchLoop statement results in undefined behavior.

A MatchLoop statement shall not be nested inside another MatchLoop.

Pattern-statements in the BreakPoint block shall define information for all signals active in the test; partial or
incremental statements are not sufficient.
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The following is an example MatchLoop statement:

MatchLoop 1024 {  V { clk=1; out=1;} V { clk=0; }
BreakPoint { V { clk=0; out=X;}}

}

22.8 Goto statement

The Goto statement defines an unconditional branch to a vector label. It is invalid to branch outside of the
Pattern block (i.e., into or out of a procedure). The syntax of the Goto statement is:

( LABEL : )   Goto LABELNAME ; 

The following is an example Goto statement:

infinite_loop: V { } 
      Goto infinite_loop;

22.9 BreakPoint statements

The BreakPoint statement defines a location in the Pattern where the device is in a stable state.This defines
locations where a large Pattern block may be segmented into multiple Bursts if tester resources are becom-
ing constrained (e.g., tester memory is full, or timing information is exceeded). Specifying BreakPoints is
optional, but is useful for very large Patterns. The BreakPoint statement has two forms:

( LABEL : )   BreakPoint;
( LABEL : )   BreakPoint { ( PATTERN-STATEMENTS )* }

The first form of the BreakPoint identifies a Pattern location where the test may be stopped during the Break-
Point, and restarted after the BreakPoint, without affecting the test. The second form identifies a location
where some Vector activity is required (such as a keep-alive clock) to allow the device to continue properly
after the BreakPoint. The pattern statements defined in this block are implicitly looped for an undefined
amount of time until the test is ready to resume execution. The pattern statements iterate completely during
the BreakPoint; the patterns are not exited until the end of the BreakPoint block even if the processing has
completed. The following is an example BreakPoint statement:

Call scanunload { scan-data }
BreakPoint;   // scan is typically at stability before the next load
Call scanload { scan-data }

The BreakPoint (with pattern-statements) is required at the end of the MatchLoop construct to define pat-
terns that may be applied after a MatchLoop has met it’s exit criteria. In a similar fashion, a BreakPoint with
pattern-statements may be defined at the end of a Loop block. These statements may then be applied during
the exit process from a Loop operation.

22.10 IDDQTestPoint statement

The IDDQ TestPoint statement defines a place in the Pattern where an IDDQ measurement may be performed.
IDDQ TestPoint statements are optional. The syntax of the IDDQ TestPoint statement is:

( LABEL : )   IDDQ TestPoint;
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The following is an example IDDQ TestPoint statement:

V { new-delta-change-data }
IDDQ TestPoint;   // perform IDDQ measurement between 2 vectors
V { new-delta-change-data }

22.11 Stop statement

The Stop statement specifies that execution of the pattern is to stop. The Stop statement is optional. The syn-
tax of the Stop statement is:

( LABEL : )   Stop ;

The following is an example Stop statement:

V { new-delta-change-data }
Stop;
V { }

All execution is halted when the Stop statement is encountered in a Pattern. Any subsequent Patterns or Pat-
ternBursts referenced in the PatternExec will not be executed after a Pattern Stop statement has been
executed.

22.12 ScanChain statement

The ScanChain statement specifies the name of a ScanChain that is active for the next set of pattern opera-
tions. The syntax of the ScanChain statement is:

( LABEL : )   ScanChain CHAINNAME ;

The following is an example ScanChain statement:

V { new-delta-change-data }
ScanChain config_A;
V { }

23. Pattern block

The Pattern block shall have a domain name. The name-space of the Pattern is shared with the PatternBurst
names. The set of names across both PatternBurst and Pattern blocks shall be unique.

23.1 Pattern block syntax

Pattern PATTERN_NAME {
(( LABEL : ) TimeUnit ‘TIME_DEF’; )
( PATTERN-STATEMENTS )*
}
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Pattern: Identifies the start of the block defining pattern data.

TimeUnit: Defines the default time units associated to non-cyclized data. The TimeUnit statement is
required if non-cyclized data is specified. The syntax of the TimeUnit statement is:

TimeUnit ‘UNITTYPE’ ;

The following is an example TimeUnit statement:

TimeUnit ’1ns’;     // timings are in nanoseconds

PATTERN-STATEMENTS: Any pattern statement may be used in a Pattern block (see Clause 22).

23.2 Pattern initialization

Every signal used in a Pattern shall have an initial WaveformChar defined in the first vector of the Pattern.
Unused signals (i.e., ones not in the first vector) default to their assigned DefaultState as defined in Clause
14, and shall not appear in any pattern statements within this pattern block.

23.3 Pattern examples

See 5.1 for Pattern examples.

24. Procedures and MacroDefs blocks

Procedures and MacroDefs are very similar, so they are discussed and contrasted together.

Table 13—Comparison of procedures and MacroDefs 

Procedures MacroDefs

May contain any Pattern statements. May contain any Pattern statements.

Supports Scan testing using Shift block. Supports Scan testing using Shift block.

Serves as a data reduction vehicle for STIL writers. Serves as a data reduction vehicle for STIL writers.

Possible reuse if no Signal substitution. Procedures 
called without Signals defined in the Call { } have no 
data substitution. Therefore, these vectors may be imple-
mented as a subroutine by STIL translators. However, 
translators may elect to always expand procedures.

Macros are always expanded. 

Possible expansion if Signal substitution. Procedures 
called with Signals defined in the Call { } have data sub-
stitution. ATE testers may not be capable of supporting 
variable data, resulting in vector expansion vs. using a 
common subroutine.

Macros are always expanded.

Invoked via Call statement. Invoked via Macro statement.

Reused vectors require that all Signals be initially 
defined. Therefore, all signals used in the procedure 
shall be initially defined in the first vector of the proce-
dure. Unused signals default to their DefaultState. 

Only the delta changes need to be specified in first vec-
tor of the Macro. Prior Signal WaveformChars are used 
when the Macro is expanded.
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24.1 Procedures block

The Procedures block defines named sets of procedures that may be called from inside a Pattern block, a
Procedure block, or a Macro block via the Call statement. A Procedures block may have an associated
domain name, allowing specific reference from a PatternBurst block or PatList block. A single global Proce-
dures block (no domain name specified) may also be defined. Only one global Procedures block shall be
defined in a set of STIL information.

All procedures shall be defined in either the Global Procedures block or a referenced Domain-named Proce-
dures block prior to being invoked by a Call statement. 

A procedure may invoke another procedure or macro, but the invoked item shall be defined before invoca-
tion. This requirement prevents recursion in procedures or macros.

The syntax for a Procedures block is:

Procedures ( PROCEDURE_DOMAIN_NAME ) {
( PROCEDURE_NAME {

( PATTERN-STATEMENT )*
} )* 

} 

Procedures: Identifies the start of the block defining procedures.

PROCEDURE_DOMAIN_NAME: Identifies an optional domain name. If omitted, then the procedures block is
globally accessible. Contains 0 or more procedure definitions.

PROCEDURE_NAME: Identifies the name of a procedure. This is the name that is to be used in the Call state-
ment that references the procedure. PROCEDURE_NAME shall be unique within a Procedures block.

PATTERN-STATEMENT: Any pattern statement may be used in a Procedure (see Clause 22). However, identi-
fying a BreakPoint or using Stop in a procedure may be confusing and lead to unexpected results. 

The current WaveformTable shall be defined prior to 
any vectors (via W statement).

The last WaveformTable specified is used. Note that the 
last WaveformTable may have been specified in a previ-
ous Macro.

Procedures return to the caller upon reaching the end of 
the procedure block (there is no “Return” statement).

Macro terminates upon reaching the end of the macro 
block.

Each Signal’s WaveformChar prior to calling the proce-
dure is reinstated upon exiting the procedure.

The current Signals’ WaveformChars remain in effect 
upon completion of the macro.

The WaveformTable in effect prior to calling the proce-
dure is reinstated upon exiting the procedure.

The current WaveformTable remains in effect upon com-
pletion of the macro.

Cannot branch outside of the Procedure block. Branch label shall be within the Pattern block.

Table 13—Comparison of procedures and MacroDefs  (continued)

Procedures MacroDefs
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24.2 Procedures example

Procedures {
procx {

W waves;
V { sigs1=11010; }
V { sigs1=00110; sigx=0; }
}

}

24.3 MacroDefs block

The MacroDefs block defines named sets of macros that may be instantiated from inside a Pattern block, a
Procedure block, or a Macro block via the Macro statement. A MacroDefs block may have an associated
domain name, allowing specific reference from a PatternBurst block or PatList block. A single global Mac-
roDefs block (no domain name specified) may also be defined. Only one global MacroDefs block shall be
defined in a set of STIL information.

All macros shall be defined in either the global MacroDefs block or a referenced domain-named MacroDefs
block prior to being invoked by a Macro statement. However, expansion of macros shall occur only after a
macro is instantiated, because the complete pattern context is necessary to properly process macros.

A macro may invoke another macro or procedure, but the invoked item shall be defined before the invoca-
tion. This requirement prevents recursion in procedures or macros.

The syntax for a MacroDefs block is:

MacroDefs ( MACRO_DOMAIN_NAME ) {
(   MACRO_NAME {

( PATTERN-STATEMENT )*
}   )*

} 

MacroDefs: Identifies the start of the block defining macros.

MACRO_DOMAIN_NAME: Identifies an optional domain name. If omitted, then the MacroDefs block is glo-
bally accessible. Contains 0 or more macro definitions.

MACRO_NAME: Identifies the name of a macro. This is the name that is to be used in the Macro statement that
instantiates the macro. MACRO_NAME shall be unique within a MacroDefs block.

PATTERN-STATEMENT: Any pattern statement may be used in a Macro (see Clause 22). However, identifying
a BreakPoint or using Stop in a macro may be confusing and lead to unexpected results. 

24.4 Scan testing

Scan Testing is a design for test methodology which incorporates interconnected shift register latches within
a product. Data may then be “scanned” into the device to pre-condition internal nets, and results may be
“scanned” out of the device for observation. Scan tests are commonly implemented as Procedures or Mac-
ros, depending on desired disposition at the end of the scan operation. (Procedure = states return to values
prior to scan operation; Macro = states retain value after the scan operation.)
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Scan Testing utilizes a special Shift block within a Procedure or Macro. The Shift block contains the vec-
tor(s) required to shift one value into/out of the scan chains. Scan testing may require pattern statements
prior to the Shift block to precondition the scan operation. Similarly, pattern statements may follow the Shift
block to post-condition the scan operation. Only one Shift statement is defined in a scan-oriented block. The
general format of a scan Procedure or Macro is:

       PROCEDURE_OR_MACRO_NAME   {
             ( PATTERN-STATEMENT )*                        // SETUP FOR SCAN
              (  Shift {   (PATTERN-STATEMENT)+   }        // PERFORM SCAN 
                ( PATTERN-STATEMENT )*                         // RELEASE AFTER SCAN
              )+
       } 

24.5 Procedure and Macro Data substitution

The processing of the Shift block has an implied repeat count contingent on the scan data defined in the pro-
cedure or macro invocation. This repeat count is the normalized length of all of the scan data. The rules for
determining this repeat count are explained in this subclause. The Shift block lacks an explicit count, since
this would impede incomplete scan. Also, STIL doesn’t define the normalized length for each scan invoca-
tion, since it may be inferred from the data.

Two special WaveformChar characters are used within the body of Procedures or Macros to identify where
data substitution is to occur. These WaveformChars are “#” and “%.” The data to substitute is provided either
from the Procedure or Macro invocation, or through a default value mechanism.

“ %” defines where a constant-value parameter is substituted. Any reference to a signal that has a % Wave-
formChar will apply the WaveformChar specified in the invocation (or the default value defined later) to that
signal. All occurrences of % for a signal, in a Procedure or Macro body, applies the same WaveformChar
value to that signal.

“ #” defines where incremental data substitution is to occur. As such, # is used to pass values into the scan
signals of a Shift block. Each iteration of the Shift block substitutes the next normalized scan state into any
signal that has a # for a WaveformChar. Only a single value is substituted for each iteration of the Shift
block. Therefore, if a Signal defines the # WaveformChar in multiple vectors within the Shift block, then the
same value is substituted in each vector for the iteration.

The # and % operators may be applied as a single character to a sigref_expr that consists of a group of sig-
nals, or they may be expanded to represent the individual signals of that group. If they are expanded to map
individual signals, then there shall be a one-to-one correspondence of WaveformChars to signals in the
group. If they are expanded, # and % may appear in a WaveformChar list in combination with other defined
(constant) WaveformChar values for signals in the specified group.

Hybrid scan testing has arisen which requires signals to change while applying the final scan state. STIL
supports this by allowing the # WaveformChar to be specified in vector(s) preceding the Shift block, and/or
vector(s) following the Shift block. The following illustrates this concept:

complex_scan { // could be a procedure or macro
C {ins=0000; outs=xxxx; }     // define all pins initially
V {si1=#; }                   // apply the first scan state
Shift { V { si1=#; clk=P; } } // apply the second to next 
                              // to last scan state
V {si1=#; cntl=1; }           // apply the last scan state

} // complex_scan
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Data substitution using the # and % WaveformChars has the following rules:

— Data specified in a Procedure or Macro invocation, assigned to a specific sigref_expr, shall be applied
first to the matching sigref_expr in the Procedure or Macro body. If sigref_expr does not appear in
the body of the Procedure or Macro, then the data shall be applied to the individual components of a
sigref_expr in the Procedure or Macro that contains a # or % for each signal that is a component of
the sigref_expr specified in the invocation. For example:

SignalGroups { sg_in=’si1+si2+si3’ {ScanIn;} sg_ou=’so1+so2+so3’ 
{ScanOut;} }

// the scan BODY could define:
all_scans { // procedure or macro

Shift { v1: V {sg_in=#;  sg_ou=###; } }//’#’ and ’###’ are 
// equivalent here

}
// the scan INVOCATION could refer to:

all_scans { si1=111; si2=111; si3=111; so1=HHHHH; so2=HHH; so3=HHH; 
}

— It is an error if the same sigref_expr in the body of a Procedure or Macro uses both # and % refer-
ences. If a signal requires scan and constant values in different statements, these values should be
passed through different sigref_exprs into that signal.

— It is an error if the same signal is referenced by multiple sigref_exprs in the invocation of a Procedure
or Macro, and multiple references to that signal in the body of a Procedure or Macro rely on compo-
nent-name-matching. Note that this is not an issue if the parameters are resolved by explicit name
matching. An example of the error situation is:

SignalGroups { sg1=’si1+si2+si3’; sg2=’si1’; sgA=’si1’; sgB=’si1’; 
sgC=’si2+si3’; }

// the Procedure/Macro BODY could contain:
V {sg1=%; }
V {sg2=%; }
}

// An incorrect call (ambiguous component-matching):
fill_ { sgA=0; sgB=1; sgC=00; }

//cannot determine whether sgA or sgB go with sg1 or 
//sg2

// A correct call (relying on explicit name matching):
fill_ { sg1=100; sg2=0; }

— If data is defined for a signal in a Procedure or Macro invocation, and the Procedure/Macro body
does not specify # or % for that signal in any vectors, then the invocation data is ignored.

— If data is not defined for a signal in a Procedure or Macro invocation, and the Procedure/Macro body
specifies # or % on that signal in any vector, then the last defined WaveformChar that precedes the
first # or % is used. This situation is a derivative of incomplete scan, where individual chains may be
inactive for certain scan operations. The last defined WaveformChar is found in the previous V or C
statement in the Macro or Procedure body.
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— If more vectors containing #’s exist in a Procedure/Macro body than there is data defined in the Pro-
cedure or Macro invocation, then substitution is performed with the available data, and the last
explicitly defined WaveformChar that precedes the first # or % is used to complete any missing data.
For example:

complicated { // procedure or macro
v1: V { pin1=0; }
v2: V { pin1=#; }
v3: V { pin1=1; }
v4: V { pin1=#; }
Shift { v5: V {pin1=#; } }
v6: V { pin1=#; }

}

— If the data passed was “pin1=HL,” then the value on pin1 in vector v1 is 0, as specified in that vector;
the value in vector v2 is H (first data substitution); and the value in v4 is L (second substitution).
Because no data is left, the Shift block is not executed and vector v5 is suppressed. Finally, vector v6
is 0 because of padding (i.e., the last explicitly defined WaveformChar before the first ’#’ was 0 in
vector v1).

— A particular sigref_expr shall appear only once in a Shift block. Consecutive shift blocks require
unique sigref_exprs for each Shift statement.

— Data across multiple signals referenced with a # is normalized as follows. For each signal with a #
WaveformChar:

1) Count the number of Vectors preceding the Shift block containing # for that signal.
2) Count the number of Vectors after the Shift block containing # for that signal.
3) If this signal has a # in the Shift block, then determine the number of possible scan shifts cycles

for this signal by subtracting the counts in steps (a) and (b) from the number of WaveformChars
specified  in the invocation argument for this signal (the actual length of the data specified for
this signal). This number may be negative (implying insufficient data for the # references out-
side of the Shift block). For purposes of step (d), the number of scan shifts is zero; but for pur-
poses of calculating the number of pad WaveformChars needed in step (e), this negative value is
applied.

4) If this signal does not have a # in the Shift block, then the required number of pad Waveform-
Chars is the result of steps (a) + (b), subtracted from the data-length passed in on the invoca-
tion.

5) Select the maximum value of step (c) across all signals in the shift. This is the number of scan
cycles to be executed.

6) For each signal, the data is padded by the amount of shift data for this signal [from step (c)],
subtracted from the number of scan cycles [in step (d)]. Scan input signals are pre-padded and
scan output signals are post-padded. The padding state is always the last explicitly defined vec-
tor WaveformChar (from either a previous V or C statement). For example:

SignalGroups {sg_in=’si1+si2+si3’ {ScanIn;}
sg_ou=’so1+so2+so3’ {ScanOut;}
sg =’sg_in+sg_ou’; }

// the scan BODY:
all_scans { // procedure or macro

C { sg = PPPPPP; }
// this defines the default pad state for all signals
// unless overridden by another state before a ’#’
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V { sg = #00##X; }
Shift { v1: V {sg_in=#;  sg_ou=#; } }
V { sg = ##0#XX; }

}
// the scan INVOCATION:

all_scans { si1=111; si2=111; si3=111; so1=HHHHH; so2=HHH; so3=HHH; 
}

The calculation to determine both the shift-count and the padding per signal, given the algorithm above, is
shown in Table 14.

This process generates the following test cycles (equivalent Vector statements after data substitution). Wave-
formChars in bold are values specified in the Procedure body. “P” is the WaveformChar specified in the ini-
tial C statement that defines the default pad state for each signal:

V { sg = P00HHX; }// pre-shift V statement
V { sg = P01HHH; }// shift cycle 1
V { sg = 111HHH; }// shift cycle 2
V { sg = 111HPH; }// shift cycle 3
V { sg = 110HXX; }// post-shift V statement

The state for si2 in shift cycle 1 is a 0, because the last defined state before the first substitution was ‘0’ for
this signal, which became the pad state for this signal.

It is illegal to pass data through nested procedures or macros.

Table 14—Example scan data normalization

Step si1 si2 si3 so1 so2 so3

Data-length 3 3 3 5 3 3

a) Pre-shift V’s by signal 1 0 0 1 1 0

b) Post-shift V’s by signal 1 1 0 1 0 0

c) Data-length [(a) + (b)] 1 2 3 3 2 3

d) Maximum scan shift 3 3 3

e) Padding length [(d) - (c)] 2 1 0 0 1 0
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Annex A

(informative) 

Glossary

The following terms and definitions are used within the context of this standard:

A.1 Domain name: A STIL block statement may contain a string before the opening brace. This string
becomes the “domain name” for all statements enclosed within those braces.

A.2 Event: A prescribed operation to be performed on a signal. An example of an event is “U,” which spec-
ifies “drive to a high value” (“Up”). Events are listed in Table 9, Table 10, Table 11, and Table 12.

A.3 Pad state: A logic state used to extend scan data to a uniform length.

A.4 Serial_data: (A) A metatype used to present language construct. (B) A list of WaveformChars or alter-
nate notations.

A.5 Sigref_expr: (A) A metatype used to present language constructs. (B) A reference to a signal, group, or
signal expression.

A.6 Spec category: A subindexing of values defined in a Spec Table, which allows variables to be defined
once and assigned multiple values. During timing expression evaluation, the specific category must be
selected to define the set of values to be used for the variables defined.

A.7 Spec table: A collection of variables referenced in timing expressions (inside Waveforms), with values
associated with each variable to be used to resolve timing expressions.

A.8 Timed event: An event at a specified time. This may or may not cause a change from a previous value.

A.9 Time_expr: (A) A metatype used to present language construct. (B) A reference to a timing expression.

A.10 Vec_data: (A) A metatype used to present language constructs. (B) A list of WaveformChars or alter-
nate notations.

A.11 WFC: See: WaveformChar.

A.12 WGL: A test interchange language defined and supported by Test System Strategies, Inc.

A.13 WaveformChar (WFC): A symbol used to reference a waveform. A single ASCII character in STIL.
This character is used to reference a waveform definition defined in a Timing block.

A.14 WaveformTable: A collection of waveforms defined to a set of Signals. Waveform Tables are refer-
enced in the Patterns block to define the set of waveforms that may be used by each Signal in the Vectors.
Each signal may have its own set of waveforms associated with it in the table.
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Annex B

(informative) 

STIL data model

This annex presents a Data Model representation of the STIL language. Figure B.1, Figure B.2, and Figure
B.3 present the main objects of the STIL language and their relationships. Figure B.4 shows the Pattern con-
structs, and Figure B.5 shows the Timing constructs.7 

7For an understanding of the notation used in these diagrams, see Object-Oriented Modeling and Design, James Rumbaugh, et al, Pren-
tice Hall, ISBN 0-13-629841-9.

Timing

SignalGroupsDomain

STILData
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Pattern ProceduresDomain
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PatternBurst
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Spec

Figure B.1—Top level of STIL data model
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SpecVariableIndexPatternBurst

Timing
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Figure B.2—PatternBurst, PatternExec, and Selector relationships
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SignalRef SignalGroupsDomain

STILData

-pinType
-termination
-defaultState
-scanIn
-scanOut
-databitCount

Signal

ScanStructures

/pinType
/termination
/defaultState
/scanIn
/scanOut
/databitCount
-base
-alignment

SignalGroup

default

SignalRefExpr

-scanLength
-scanOutLength
-scanCells
-scanIn

-scanMasterClock
-scanSlaveClock
-scanInversion

ScanChain

Figure B.3—Signal, SignalGroup, and ScanStructures
group relationships
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Figure B.4—Pattern statement relationships
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Figure B.5—Timing statement relationships
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Annex C

(informative) 

GNU GZIP reference

STIL files may be compressed using the GNU GZIP (deflate) program.8 Compressing files addresses the
concerns with transferring and storing huge amounts data associated with the design and testing of complex
digital VLSI circuits (e.g., “the Gigabit problem”). 

The GZIP package is available from various locations, including:

— prep.ai.mit.edu:/pub/gnu/gzip-1.2.4.tar (or.shar or .tar.gz : source);
— prep.ai.mit.edu:/pub/gnu/gzip-msdos-1.2.4.exe (MSDOS, lha self-extract);
— oak.oakland.edu:/simtel/msdos/compress/gzip124.zip (MSDOS exe);
— garbo.uwasa.fi:/unix/arcers/gzip-1.2.4.tar.Z (source);
— garbo.uwasa.fi:/pc/unix/gzip124.zip (MSDOS exe);
— ftp.uu.net:/pub/archiving/zip/VMS/gzip124x.vax_exe (VMS exe);
— mac.archive.umich.edu:/mac/util/compression/macgzip0.3b2.sit.hqx (Mac);
— src.doc.ic.ac.uk:/computing/systems/mac/info-mac/cmp/mac-gzip-022.hqx;
— mac.archive.umich.edu:/mac/development/source/macgzip0.2src.cpt.hqx.

It is suggested that any decompression code that is derived from GZIP be contained in a separate library to
protect proprietary code in the remainder of each reader (see Figure C.1).

8The author and copyright owner of the GZIP program is Jean-loup Gailly (jloup@chorus.fr). The GZIP program is free software; it can
be redistributed and/or modified under the terms of the GNU General Public License. The GNU General Public License is available
from the Free Software Foundation, Inc., 675 Massachusetts Ave., Cambridge, MA 02139, USA.

decompress.a

proprietary.a

Figure C.1—Recommended code partitioning for incorporating GZIP
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Annex D

(informative) 

Binary STIL data format

D.1 Binary STIL considerations

The original mandate of the STIL working group was to: 

a) Solve the high-density vector transportation problems to testers (e.g., the “gigabit problem”); 
b) Optimize the “Tools to Testers” binary and ASCII test vector formats. 

These mandates address the transfer, storage, and processing of huge amounts of “pattern” information asso-
ciated with the design and testing of complex digital VLSI circuits. Primarily, this means minimizing the
time it takes for a consumer of this information to read/process the file. Secondarily, the file size should be
minimized.

The binary representation was perceived as only required for the pattern/vector data. This is the primary data
volume contributor to the “gigabit problem.” All other test constructs (e.g., signals, timings, etc.) would have
an ASCII only representation. In addition, the pattern/vector data would not be limited to being binary only;
it still has an ASCII representation.

In seeking a binary representation, the following issues had to be considered/met: 

a) Read/translation time efficiency. The time required to read and translate the file must be minimized.
b) Storage size efficiency. The file size must be minimized to ease disk space requirements and network

throughput.
c) Interchangeability. Writers and readers must operate in a heterogeneous environment.
d) Flexibility and extensibility. The format must be flexible to accommodate user extensions and

extendable to accommodate future revisions.
e) No information lost. All pertinent information must be preserved. Formatting may be lost from an

ASCII equivalent.
f) Provide direct access (to be considered but not required). Can a format allow for direct or pseudo-

direct access of information, or must the complete file be read?
g) Load time (to be considered but not required). Can a common binary be devised which allows for

direct loading into testers, effectively eliminating the translation step?

Possible binary representations include:

— Compaction. A compact binary could be devised which is similar to the ASCII definition, only repre-
sented in the minimum number of bits.

— Compression. A compressed binary could be devised using run-length encoding and/or Huffman
codes (like GNU’s GZIP and UNIX Compress). Run-length encoding reduces serial redundancies,
and is generally most effective in vertical (per signal) vs. horizontal (per vector) representations.
Huffman codes replace common sequences with a small number of bits. Less common sequences
use either more bits or are represented without compression. Huffman codes have the following
characteristics: decompression time is independent of the compression, and it is generally possible
for the writer to achieve higher levels of compression by spending more time identifying the “com-
mon sequences.”
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Run-length encoding would be custom defined. Huffman codes could be custom tailored for the
binary data, or generic implementations (GNU’s GZIP or UNIX Compress) could be used. 

— Compaction and Compression. A binary could be devised which encodes the data into the minimum
number of bits, and then compresses common byte sequences. Again, the compression could be cus-
tom implementations or could utilize generic implementations.

The conclusion of the STIL binary subgroup was to utilize only data compression rather a combination of
compaction and compression. Compression alone achieves:

— A minimized file size;
— Minimized read time (decompression time offset by reduced read time, which is negligible relative to

overall translation process);
— Cross-platform portability;
— Flexibility and extensibility;
— Total persistence of all ASCII information;
— Applicability to all STIL data, not just Pattern data.

The GZIP compression format (deflate) was selected over the UNIX Compress format or a custom Huffman
codes implementation. The GZIP compression format is:

— Very efficient;
— Available in cross-platform implementations;
— Copyright protected with provisions for freely copying and distributing (see Annex C).

D.2 Binary STIL conclusions

The results of the binary issue evaluations which led to the GZIP compression format conclusion were:

a) Read/translation time. This requirement was subjective, with no specific time per data quantified.
Read time is inversely proportional to translation time. The smaller the file, the faster the read time.
However, a compressed file adds to the translation time when performing the decompression. This
decompression time may be offset by transmission times for a smaller file when operating in a net-
work environment.
Direct mapping into binary (compaction) is impacted by the indirection within STIL (which pro-
vides its flexibility). Each signal would require a separate symbol table to associate its Waveform-
Chars to binary codes. Symbol tables would also be required for the Signals, SignalGroups, and
WaveformTable names.
The only benchmark in this area was Teradyne’s translation of their ASCII source vectors to their
binary format (LVMDB), compared to translating IBM “compact” binary source vectors to
LVMDB. The binary translation is approximately one-third faster. However, when considering
STIL, this ratio would be reduced by the additional tasks (also applicable to ASCII) of:

1) WaveformChar association and resolution to the active WaveformTable;
2) Potential recycling of vectors;
3) Scan data normalization and potential merging of unload/load data;
4) Pattern splitting due to possible resource constraints (timing, buffer sizes, etc.).
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b) Storage size efficiency. This requirement was subjective, with no specific data sizes quantified. Com-
pression using the GZIP format provides good file size reduction, providing two to three times the
reduction over compaction alone. Compression of STIL ASCII vs. compression of “compact” binary
results in similar file sizes (see Table D.1). By utilizing pipes or incorporating the decompression
into STIL readers, the large uncompressed file is not stored on disk or transmitted across networks. 
A custom compression implementation may yield further reduction, but was outside of the group’s
resources (prototype developers, availability of proprietary “real” test data, and testing time).

c) Interchange. Data compression in the GZIP format operates at the byte level and is, therefore, plat-
form independent. Binary compaction requires integers which have byte ordering implications. Pos-
sible sceneries include: (A) defining a canonical ordering requiring incompatible machines to
perform byte manipulations, or (B) allowing any byte ordering in the file and requiring all readers to
perform byte manipulations, if necessary. 
Binary compaction requires alignment. Each platform and/or compiler may pack data structures dif-
ferently. This includes “when is byte-alignment used,” as well as word-alignment and double-word
alignment.

d) Flexibility and extensibility. A compact binary could be devised to allow for user extensions and
future additions. Vertical run-length encoding compression may be impacted by non-signal-oriented
extensions. New extensions will be transparent to the GZIP compression format.

e) No information lost. Compact binary has the potential to lose information, such as formatting (base,
whitespace, etc.) and comments. The GZIP compression format loses no information.

f) Direct access. Requires storing the data into known block sizes/structures. Predefined block sizes
may not be advantageous to the final file size. Delta changes and variable length scan data may
impact savings. Non-vector information (WaveformTable references, comments, extensions, etc.)
may impede block definitions. Compression inhibits direct access.

g) Load time. A proposal arose to have the binary directly loadable by ATE testers. However, this may
hinder individual ATE companies from developing new features/architectures. Also, load time could
be impacted by on-the-fly translation tasks such as:

1) Recycled vectors for complex timings;
2) Scan normalization and merging;
3) Resource constraints (timing and vectors).

Table D.1 illustrates some metrics of test cases created in a “compact” binary vs. STIL ASCII, with GZIP
compression and GUNZIP decompression time.
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Table D.1—Comparison of formats

STIL.asc
STIL.asc.gz (Mb)

GUNZIP 
time

compact.bina

compact.bin.gz (Mb)
GUNZIP 

time 

Micro1 
Scan based

 174 Mb ASCII data

56.6 
17.4 

49.26 s 43.3
17.1

43.28 s

Micro2 
Scan based

   359 Mb ASCII data

115.9 
39.6 

3 m 33 s 82.2
38

3 m 5.38 s

Micro3
   Functional based
   278.7 Mb source data

35.0
2.1 

15.72 s 30.4
3.1

18.31 s

Asic1 
    Scan basedb

21.7 
8.8 

22.68 s 33.2
8.5

58.36 s

Asic2 
    Scan basedb

90.1 
35.0 

1 m 30.92 s 72.6
25.27

1 m 9.94 s

aInternal IBM forma; names replaced with integers, delta changes, normalized scans, and minimum grouping capability.
bOnly processed a subset of the patterns from a binary database; file size for just the subset of patterns is unknown.
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Annex E

(informative) 

LS245 design description

The LS245 is an octal bus transceiver. Figure E.1 shows one structural representation for this model; a
VerilogTM representation9 is shown in Figure E.2. This information is provided solely to assist comprehen-
sion of the examples in the tutorial (Clause 5) that are based on this design.

9This refers to IEEE Std 1364-1995, IEEE Standard Description Language Based on the VerilogTM Hardware Description Language.
IEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://www.standards.ieee.org/).

OE_

DIR A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

busAEN
busBEN

Figure E.1—LS245 structural model



IEEE
Std 1450-1999 IEEE STANDARD TEST INTERFACE LANGUAGE (STIL)

128 Copyright © 1999 IEEE. All rights reserved.

   

/*   this model makes use of the devices:
 AND2 (output, in1, in2)      -- 2-input AND gate
 INV  (output, input)         -- single-input inverter
 TBUFP(output, input, enable) -- float-state driver
 */
module ls245 
(DIR,OE_,A0,A1,A2,A3,A4,A5,A6,A7,B0,B1,B2,B3,B4,B5,B6,B7);
  input DIR, OE_;
  inout A0,A1,A2,A3,A4,A5,A6,A7,B0,B1,B2,B3,B4,B5,B6,B7;

AND2 ibusA (busAEN,DIR,notOE_);
INV  inotOE_ (notOE_, OE_);
INV  inotDIR (notDIR, DIR);
AND2 ibusB (busBEN,notDIR,notOE_);
TBUFP iA0(A0,B0,busBEN); TBUFP iA1(A1,B1,busBEN);
TBUFP iA2(A2,B2,busBEN); TBUFP iA3(A3,B3,busBEN);
TBUFP iA4(A4,B4,busBEN); TBUFP iA5(A5,B5,busBEN);
TBUFP iA6(A6,B6,busBEN); TBUFP iA7(A7,B7,busBEN);

TBUFP iB0(B0,A0,busAEN); TBUFP iB1(B1,A1,busAEN);
TBUFP iB2(B2,A2,busAEN); TBUFP iB3(B3,A3,busAEN);
TBUFP iB4(B4,A4,busAEN); TBUFP iB5(B5,A5,busAEN);
TBUFP iB6(B6,A6,busAEN); TBUFP iB7(B7,A7,busAEN);
endmodule

Figure E.2—LS245 VerilogTM representation
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Annex F

(informative) 

STIL FAQs and language design decisions

Some common questions arise as new individuals come to understand STIL. This annex covers some of the
most frequently asked questions about STIL and STIL structures.

1) STIL allows some keywords and statement fragments to be reused in different contexts. Why?

During STIL development, the Working Group felt that the usage of common terms was often better than
attempting to define a new term. This has resulted in the reuse of some terms in slightly different contexts.
The Group felt this to be less confusing than the alternative process of creating names.

Also, certain statement fragments, noticeably block-definition statements and block-reference statements, do
have much the same form. For example, “timing one {}” declares a timing block, and “timing one;” refer-
ences or uses that timing block in a PatternExec. This causes the keyword “timing” to be applied differently,
depending on the type of statement in which it occurs. Again, the Working Group’s decision was to accept
this issue rather than attempt to create names.

2) STIL uses some of the WGL states, but not the “data” and “inverted data” states of WGL (S and
Q). Why not? And what about surround-by-complement definitions?

WGL “data-driven” characters are restricted to “0” and “1” values only. During development of STIL this
restriction was questioned, and an alternative implementation was defined that supports the mapping of
more-than-two states into the waveform. This solution was seen to be more general and, therefore, preferred.
Also, by not using “S” and “Q” environments, a very uniform WaveformChar-mapping environment is
defined; all Vector data maps back to waveforms through WaveformChar resolution only, and is not depen-
dent on event characters used in the waveform to define how to interpret the data. Finally, “inverted-data”
relationships, which are necessary to define surround-by-complement waveforms, are supported in the STIL
strategy by reversing the order of events presented in the waveform.

3) In waveform definitions, STIL allows a signal to be potentially referenced in several waveform
definitions; for instance, “SIG1 { 01 {} } SIG1 { HL {} }”. It would seem that the declaration
“SIG1 { 01 {} HL{} }” would be a more direct way to accomplish the same thing (and is also
currently supported). Why not require signals to be referenced once in the Waveform block
(this question from Intel review of 0.15)? 

It is true that both forms are allowed in STIL, and the reason is to facilitate the use of groups in the wave-
form definition. When groups are used, it may be natural to define a set of output characteristics across all
signals that have output capability, and to define a set of input characteristics across all signals that have
input capability. InOut (bidirectional) signals would need to be defined separately if this requirement were in
place, as they share characteristics in both groups. This would require additional, redundant waveform defi-
nitions solely because the language disallowed multiple references to a single signal.

4) There seems to have been a consideration made for IDDQ testing, with the IDDQ TestPoint state-
ment. But there are no other tests defined. Why this one? Why not others?

The Working Group decided that an IDDQ stop identification was straightforward to define. This test operates
on the entire state of the design, whereas most other tests require some reference to specific signals and per-
haps even external measurement criteria. In order to define other tests, additional parameters of those tests
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have to be accounted for, and this was determined to be outside the scope of this project, as currently
defined. It is also the concept of the Working Group that all other test environments, including any additional
parameters that must be considered for those tests, can be defined in STIL through the use of Ann and User-
Defined Keywords. While this does not lead to a shared common solution, it allows those with critical need
to put in place the information, and facilitates requirement discussions for future revisions of the language.

5) One version of STIL contained reference statements in the Pattern block, to allow Signal-
Groups, Procedures and MacroDefs to be specified directly from the Pattern and not solely
through the PatternBurst. Why was this removed?

In a Working Group meeting on April 18-19, 1997, constructs supporting referencing SignalGroups, Proce-
dures, and MacroDefs from the Pattern block were removed. There were several motivations behind this
change: 

a) As the language stood with those constructs, procedure processing could not occur until Patterns
were being read. This means the processing flow would have to maintain this data until all the pat-
terns were read, as procedure behavior could be different if SignalGroups were different. The new
environment allows procedure processing to occur once a PatternBurst (or PatternExec as well,
depending on issues with timing resolution) is read that references that procedure. 

b) By localizing the references, it is much easier to identify the context in which something is used; a
user doesn’t have to check two different locations. 

c) “Binding” of signals is defined much earlier in the processing, rather than being deferred to the Pat-
tern (which is basically very late binding). 

d) Because STIL supports multiple and hierarchical PatternBursts, there are no additional features pro-
vided by resolution in the Pattern that are not available with PatternBurst support.

6) Constantly needing to reference signals in Vector statements seems to be expensive. How about
a way to indirectly reference signals?

This was considered in a meeting held on June 6, 1996. The information below was discussed. This con-
struct was removed because of complications concerning consistent handling of hex/decimal options for this
statement: 

Incremental Data Vector (V) Statement

The Incremental Data Vector statement contains only vec_data. The sigref_expr for this data is taken relative
to the previous Vector statement. All signals in the previous vector are used as a group reference for the
vec_data present in this statement. The syntax of an Incremental Data Vector statement is:

( LABEL : )    V(ector) vec_data;

For example:

w wavedef;
v { special_1 = 1; special_2 = 1; };
v 10; //incremental vector, using special_1 and special_2;
v 11; //next incremental vector.

The Incremental Data Vector statement may be used only after a complete Vector {} statement; the signals
referenced in that complete Vector are used as the signals (in the same order) for the data in the Incremental
Data Vector. In this statement, all data is provided by WaveformChars only to the individual signals; there
are no hex or decimal options for the vec_data.
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7) Scan-in and Scan-out constructs are defined to apply to single signals only. Why?

While the language constructs can be defined to support multiple-signal situations, the complications with
multi-bit options, etc., caused the Working Group to decide that scan data should be defined individually.

8) The uniform use of the term “sigref_expr” implies that groups can be defined using expressions
anywhere. Is this true?

Yes, the language does allow references to signal expressions any place a multiple-signal reference can be
made. This was not always a part of the language; during early discussions, when a binary format was being
postulated, the creation of “groups on-the-fly” was considered counter to being able to reference all defini-
tions from a central location, and groups on-the-fly were not allowed. However, when the binary discussion
moved to a more general compress option, the ability to define groups on-the-fly was supported. It must be
noted that while groups can be defined “on-the-fly,” they can only be assigned names when defined inside
the SignalGroups block.

9) STIL is defined to be case-sensitive. However, communication between different tool environ-
ments may make this decision a difficult thing to enforce, particularly on signal names. For an
environment meant to transport data between different tool sets, case-sensitivity may be more
of a pain than a value. Why make this restriction?

This is an issue when moving data between different environments, and the concern is valid. Different envi-
ronments will preserve information—particularly signal names—differently. However, the concern is not
limited to case. Special characters may result in tool-dependent interpretation of additional meaning behind
names; this meaning doesn’t get transported between systems either. Therefore, it is highly recommended
that a single source of signal name definitions in the STIL environment be supported by all tools using STIL
data, and that individual tools, if operating from a different database internally, be prepared to map into the
STIL names. Name mapping can also be supported through single-signal group names, which would allow
tools to generate information using the names defined in their respective databases. However, even with this
capability, the creation of the name-aliasing group section still requires a correlation function back to the
STIL names. This is most of the effort required to address the name-correlation issue anyway, and the bene-
fits of preserving tool-dependent names in STIL is probably minimal.

10) The SignalGroups statement, when used to reference a group, can occur in the PatternBurst and
the Timing sections. If it doesn’t occur in the PatternBurst, will groups used in the Patterns be
resolved to definitions found from the reference in the Timing?

No. Timing data and Pattern data are considered parallel streams of information; definitions of Timing infor-
mation must be complete at the Timing block level (albeit final resolution of timing values occurs in the Pat-
ternExec), and definition of Pattern information is complete in the PatternBurst. If a group is used that is not
defined at either of those points for Timing and Pattern data, respectfully, then that usage is an error.

11) What is the order of execution of PatternExecs?

There is no order of execution defined for PatternExecs in STIL today. The actual assembly of a complete
test program (including levels, binning, order, and application of PatternExecs, etc.) is left to the test equip-
ment vendors support.

12) The Stop statement appears in both the Patterns and PatternBurst. Does it have the same effect
in either location?

The Stop statement, when present in the Patterns, causes complete termination of the test procedure. This is
because there is no context to link this pattern execution into a sequence at this point. The Stop statement
may also be defined in two different locations in the PatternBurst. When the Stop statement is defined
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outside the PatList statement in the PatternBurst, then that Stop statement terminates execution of the burst,
which will allow a subsequent burst to start executing if one is defined. If the Stop statement is defined inter-
nal to the PatList statement, then the Stop is applied only to the Pattern that contains the matching label
when that label is executed. This causes that Pattern to stop executing; however, any subsequent Patterns in
the PatternBurst will execute after that Stop.
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